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Abstract 

It is commonly accepted that internal validity comes before external validity. The former is 

concerned with establishing the causal relationship between variables, and the latter addresses 

the extrapolation of a causal relationship across conditions.  In this work we challenge the long-

standing notion of the primacy of internal validity. We argue that when generalization of a causal 

inference is the goal, the two forms of validity achieve parity in their logical priority and 

importance. The role of selection, which results in a difference in the composition between the 

“generalized from” and the “generalized to” samples, poses a concurrent threat to both forms of 

validity. As a result, neither takes precedence, and strategies for eliminating bias from selection 

simultaneously affect both forms of validity. We present the argument graphically and 

algebraically, and include an empirical example. An implication of this result is a challenge to 

the legitimacy of Randomized Control Trials (RCTs) as a gold standard method for causal 

inference, because this prioritization stems from the assumption of the primacy of internal 

validity. RCTs may be considered gold standard only under the special circumstances where 

generalization is not an objective. The results of this work have the potential to expand what is 

regarded as an admissible range of study designs, as well as the evidence base, for evaluating 

which programs work for whom and under what conditions. 
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Towards the Unification of External and Internal Validity: An Empirical Approach 

 

 In research and evaluation across many fields it has become conventional to think of 

internal validity of causal inferences as coming before external validity. The argument is that we 

first establish as best as we can whether the relationship between a treatment or exposure and an 

outcome is causal (internal validity), and only then do we address the problem of demonstrating 

that the relationship generalizes across changes of conditions (external validity). 

 In the current work, we introduce a methodological innovation that runs contrary to the 

conventional ordering of internal and external validity.  Specifically, we argue that when causal 

generalization is the aim, and when there is a systematic difference between the “generalized 

from” and the “generalized to” groups in terms of the composition of their samples, then 

establishing internal and external validity should be considered as part of the same problem.   

 This innovation is important because it has the potential to elevate the status of non-

experimental methods (such as quasi-experimental designs, including comparison group design) 

and increase their use for drawing generalizations about causal effects. This, in turn, may 

potentially increase the pool of allowable evidence for informing generalizations, serving a 

larger number of stakeholders and decision-makers who need more-ample evidence more  

quickly.      

 This work proceeds as follows. First, we summarize the standard view concerning 

internal and external validity and their prioritization. Second, we develop an alternative view that 

addresses the important role of selection bias for both forms of validity, and has implications for 

drawing causal generalizations. We develop the argument (1) graphically, (2) algebraically, and 

(3) empirically. We end the work by drawing conclusions and discussing implications.  
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The Standard Model: The Primacy of Internal Validity 

In this work, we provide an alternative interpretation of the relationship between internal 

and external validity, with potential for rebalancing criteria for causal validity, and reprioritizing 

what are considered “gold standard” methods. Before we make our case, we review standard 

definitions of internal and external validity, and the accepted model for their prioritization.  

Internal validity. The internal validity of a causal inference is normally defined as 

addressing whether the observed covariation between two variables reflects a causal relationship 

(Shadish et al. 2002). Primary threats to internal validity include factors that compete with 

treatment in the explanation of outcomes (Shadish et al., 2002), with selection being the main 

concern. Selection happens when the treatment and comparison groups differ in the distribution 

of attributes of their members that affect the outcome. For example, the internal validity of the 

inference that an educational program causes improvement in students’ reading skills may be 

challenged if the conclusion is reached by comparing program users to non-users, and if the two 

groups differ in terms of home environments that have a bearing on reading, independently of 

treatment.  When this happens the effect of the program is conflated with effects of individual 

characteristics (quality of home environment). Stated more formally, one threat to internal 

validity is a confounded selection of persons to conditions (Hotz et al., 2005), which results in a 

biased causal inference.  

The best way to limit the threat to internal validity from selection for a study sample is to 

randomly assign subjects to conditions. This random selection mechanism, by definition, 

eliminates bias from confounded selection into conditions (Hotz et al., 2005). A quasi-

experiment (QED) often supports weaker claims of internal validity because the mechanism for 

selection into conditions is not fully understood.  
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External validity. A common definition of external validity is the extent to which a 

causal relationship holds across differences in “persons, settings, outcomes or treatment variants” 

(Shadish et al., 2002, p. 256). Threats to the external validity of a causal inference include factors 

that moderate the relationship between a treatment and an outcome, including characteristics of 

persons that interact with treatment and thereby produce variation in its impact.  

The primacy of internal validity. These definitions of internal and external validity are 

consistent with the idea that the internal validity of a causal inference is established before 

making claims concerning its external validity. According to this view, one first establishes the 

validity of the statement that the relation between treatment (T) and the outcome (O), represented 

as T→O, is causal, and only then does one discuss the role of additional factors that impinge on 

the relationship and moderate the impact, thereby limiting its generalizability. In practice, this 

prioritization of validity means using designs and methods that help to rule out plausible rival 

explanations for the covariation of treatment and outcome, and then evaluating the robustness of 

that relationship across conditions that might moderate it. Failure to replicate a causal 

relationship implies a limitation of external validity (Cook, 2002; Shadish et al., 2002). From this 

perspective, if the internal validity of a causal inference is dubious, then claims about its external 

validity are even more uncertain because there is a high risk that they rest on a false causal claim.  

That internal validity comes first is seen in much of standard writing on the topic. 

Shadish et al., (2002) describe it as the “sine qua non”, that is, the “without which not” (Shadish 

et al., 2002) or as “ ‘the basic minimum without which any experiment is uninterpretable’ ” 

(Campbell and Stanley, 1963, p. 5, in Shadish, et al., p. 97). However, they are also careful to 

note that internal validity is inseparable from external validity. The latter is considered “the 

desideratum” (the purpose or objective) of educational research (Shadish et al., 2002, p. 97). 
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External validity essentially is a close second. The focus on “internal validity first” is also 

observed in economics (and more recently many other fields) with the development of the 

Within Study Comparison (WSC) research tradition (Lalonde, 1986; Fraker et al., 1987). This 

research lineage is dedicated to understanding the role of selection bias as it affects internal 

validity separately from the problem of external validity. In a recent count, more than 60 such 

studies have been conducted (Wong et al., 2018). The works evaluate the capacity of comparison 

group designs, and other non-experimental methods, to replicate benchmark impacts from 

experiments.  A few exceptions that apply WSC methods to empirically evaluate the accuracy of 

generalized causal inferences include works by Dehejia et al., (2021), Hotz et al., (2005), Hotz et 

al, (2006), Jaciw (2016a,2016b), Jaciw et al. (2021) and Orr et al., (2019).   

The primacy of internal validity is also reflected in how evidence is prioritized in 

technical standards for conducting impact research and evaluation such as by the What Works 

Clearinghouse (WWC) (U.S. Department of Education) and Evidence for ESSA 

(https://education.jhu.edu/2020/02/evidence-for-essa/) in the U.S., and the document Measuring 

Impact by Design (Privy Council Office, 2019) in Canada.  For example, in standards of 

evidence by WWC, only a handful of designs can achieve the coveted status of meeting 

standards “without reservations”, with Randomized Control Trials (RCTs) chief among them. 

Comparison group designs, which are quasi-experimental, can at best meet standards with 

reservations1. In Measuring Impact by Design the primacy of internal validity is absolutely clear: 

“Once internal validity is assured to a good degree … external validity will then become an 

important issue for future roll out and design. (p. 49).” 

 
1 In this work, among QEDs we consider primarily comparison group designs in which a group that receives 

treatment is compared with one that does not, and where selection into groups is not determined through random 

assignment (i.e., the “non-equivalent comparison group design” [Shadish et al., 2002]). There are many types of 

QEDs (Shadish et al., 2002), but for this work we use the term interchangably with comparison group designs. 
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 Implication of putting internal validity first. If we accept the premise that internal 

validity is prior to external validity, then it follows that generalizations that are based on 

evidence from QEDs are on a shakier foundation than ones that are based on true experiments. 

Generalizations from non-degraded experiments are subject only to external validity bias 

(𝐸𝑉𝑏𝑖𝑎𝑠) whereas generalized causal inferences from quasi-experiments are subject to both 

internal validity bias (𝐼𝑉𝑏𝑖𝑎𝑠) and 𝐸𝑉𝑏𝑖𝑎𝑠, so that the situation can only get worse. (In the 

section that follows we mount a challenge to this standard view.)   

Before stating the main ideas of this work, we note that not all traditions in research and 

evaluation consider internal validity to come before other forms of validity, or even define 

internal validity as we have described above. Lee Cronbach and his colleagues are one example, 

(e.g., Albright et al., 2000; Cronbach, 1975; Cronbach 1982). Also, not everyone regards 

randomized experiments as the one best method for establishing causal relationships between 

variables (e.g., Patton, 2015; Scriven, 2008).   

 

The Important role of Selection as a Threat to External Validity 

In this work we assert that if the generalizability of a causal relation is the goal, then the 

primacy of internal validity is unfounded, and that there is a principled way to demonstrate this. 

That is, when the goal is to establish the external validity of a causal inference, then there is no 

reason to accept that internal validity must always precede external validity. A better rendering 

of their relationship, is that in most contexts, and especially in evaluations in the field, internal 

and external validity of causal inferences are co-occurring and are related or complementary. 

Selection. Our argument rests on the foundational idea that selection plays a role in both 

internal and external validity bias.  As described above, a principal source of 𝐼𝑉𝑏𝑖𝑎𝑠 is 
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imbalance between conditions on factors affecting average performance; that is, confounded 

selection into conditions. However, selection is also an important source of 𝐸𝑉𝑏𝑖𝑎𝑠, specifically 

from selection into the “generalized from” and “generalized to” samples,  that produces 

imbalance on moderators of impact (Cole et al., 2010, Hotz et al., 2005, Jaciw, 2016a). 

Moderators of the treatment impact are characteristics of individuals or settings that interact with 

the treatment, thereby increasing or decreasing the magnitude of the effect. Imbalance on 

moderators between the “generalized from” and “generalized to” samples results in 

heterogeneity in impact between them, which limits the generalizability of the average causal 

impact. Selection resulting in 𝐸𝑉𝑏𝑖𝑎𝑠 is described as due to confounded selection into locations 

(Hotz, Imbens and Mortimer, 2005).  

Why is it important that selection plays a role in both types of bias? If selection underlies 

both 𝐼𝑉𝑏𝑖𝑎𝑠 and 𝐸𝑉𝑏𝑖𝑎𝑠, it unifies them in a way that undermines the prioritization of one over 

the other.  There are two basic situations where we seek to draw a causal inference: 

Case 1: If the study sample is the inference population, then internal validity is first and 

an RCT is the best study design for eliminating possible bias from selection into 

conditions. However, internal validity comes first only because external validity is not in 

question. In other words, internal validity is first only because it is the sole concern. 

Case 2: If the goal is to evaluate program impact for a sample that is not identical to the 

study sample (it may be overlapping with or mutually exclusive to the study group) – that 

is, if the full study sample is not the inference population (or a random sample of the 

inference population) – then selection may be a source of 𝐼𝑉𝑏𝑖𝑎𝑠 and 𝐸𝑉𝑏𝑖𝑎𝑠, and we 

should consider how it can simultaneously lead to either form of bias.  
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𝐸𝑉𝑏𝑖𝑎𝑠 is immaterial to Case 1, therefore the question of the primacy of either form of 

validity applies only to Case 2. We consider these situations in the next section.  

 

The Implication of Parity of 𝑰𝑽𝒃𝒊𝒂𝒔 and 𝑬𝑽𝒃𝒊𝒂𝒔 for Study Design 

We noted above that for Case 1 – where the study sample is the inference population – an 

RCTs is an optimal design because it rules out biasing effects from confounded selection into 

conditions within the study sample. What is the optimal design choice for Case 2; that is, when 

bias in impact may happen from confounded selection into conditions or locales?  

In what follows, we demonstrate that with Case 2 an RCT does not always produce the 

less-biased result. In other words, under specific conditions, a QED is better for avoiding bias 

from selection.  

To illustrate the main argument of this work, we use graphical, algebraic and empirical 

arguments. We start with four graphical scenarios. We draw on examples from education. 

 

Scenario 1.  

Referring to Figure 1, the goal is to evaluate the average program impact for the full 

sample at inference site 𝐷 = 0. An experiment is conducted at a site 𝐷 = 0. The study sample 

consists of the whole student population at 𝐷 = 0 at the start of the study.  External validity bias 

is not a concern, because the study sample is the inference sample (i.e., Case 1 in the previous 

section).  
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We express average impact at  𝐷 = 0 as the difference in average outcome 𝑌 between 

individuals randomly assigned to treatment, and those randomly assigned to control2:  

𝐼𝑀𝑃𝐴𝐶𝑇(𝐷 = 0) = 𝑌(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝐷 = 0) − 𝑌(𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐷 = 0)  (1) 

The average impact quantity at 𝐷 = 0 that is estimated through an RCT at that site is 

represented in terms of the length of the green line in Figure 1 (𝐼𝑀𝑃𝐴𝐶𝑇(𝐷 = 0)).  This is the 

benchmark “true” average impact for the site3.  

 

Figure 1. Average impact of 𝑇 = 1 relative to 𝑇 = 0 for inference site 𝐷 = 0 

 

 
2 We adopt a basic notation to avoid excessive formalism. A more formal representation of a similar approach using 

the “potential outcomes” framework (Rubin, 1974) is given in Author, (XXXX). 

 
3 For the scenarios considered here, we focus on true values for impact and bias. We discuss the role of random 

sampling error later. 
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Scenario 2.  

Referring to Figure 2, the goal is to evaluate the average program impact for the full 

sample at inference site 𝐷 = 0. The whole student population at 𝐷 = 0 is assigned to treatment 

𝑇, which precludes an experiment at the inference site.  

External validity bias is not a concern, because the study sample – all students at 𝐷 = 0 –  

constitute the inference sample, (like Scenario 1, this scenario corresponds to Case 1 described 

earlier.)  

Given that a counterfactual to average performance in the other conditions (i.e., without 

the program) is not available for 𝐷 = 0 , a comparison group is formed using individuals from 

one or more other sites (𝐷 = 1) who have not used the program. The average impact quantity at 

𝐷 = 0 based on this quasi-experimental (𝑄𝐸𝐷) comparison is expressed as follows:   

𝑄𝐸𝐷1(𝐷 = 0) = 𝑌(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝐷 = 0) − 𝑌(𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐷 = 1)   (2) 

This is represented as the length of the red line (MEASURED IMPACT) in Figure 2. Bias 

in this causal quantity is the difference between the inferred and true (benchmark) impact 

quantities for inference site 𝐷 = 0. For 𝑄𝐸𝐷1 this is:  

𝐼𝑉𝑏𝑖𝑎𝑠 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐼𝑚𝑝𝑎𝑐𝑡 − 𝑇𝑟𝑢𝑒 𝐼𝑚𝑝𝑎𝑐𝑡 =  𝑄𝐸𝐷1(𝐷 = 0) − 𝐼𝑀𝑃𝐴𝐶𝑇(𝐷 = 0) 

= 𝑌(𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐷 = 0) − 𝑌(𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐷 = 1)      (3) 

𝐼𝑉𝑏𝑖𝑎𝑠 is represented in Figure 2 as the length of the blue line, which is the difference in 

lengths of the red and green lines. This is the difference between the sites in their average 

performance in the absence of treatment. 
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Figure 2. Average impact inferred for site D=0 through a comparison with controls at site D=1 

 

Note: short horizontal bars representing average performance are black if the value is assumed measured, 

and empty (white) if the value is assumed unknown and therefore must be obtained from a comparison site.  

 

Scenario 3:  

The goal is to infer what the average program impact is for all students at site 𝐷 = 0.  

No students have received the program at that site, and an experiment has not been 

conducted there. This requires generalizing a value of program impact to the inference site  

𝐷 = 0 using information from another locale.  

The impact finding from an uncompromised experiment at a comparison site 𝐷 = 1 is 

used to infer impact at the site of interest, 𝐷 = 0. That is, locale 𝐷 = 1 supplies an estimate of 

the potential difference in performance between treatment and control for site 𝐷 = 04.  

 𝑅𝐶𝑇𝐷1(𝐷 = 0) = 𝑌(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝐷 = 1) − 𝑌(𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐷 = 1)   (4) 

 
4 𝑅𝐶𝑇𝐷1(𝐷 = 0) is experimental and identified for the study site, 𝐷 = 1; however, it is not identified for the inference site, 𝐷 =
0. The sample at 𝐷 = 1 is effectively a non-experimental comparison group for generalizing impact to 𝐷 = 0.  
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(We denote this “𝑅𝐶𝑇𝐷1(𝐷 = 0)” to emphasize that the inferred impact is from an 

uncompromised experiment conducted at a comparison site  (𝐷 = 1) and applied to the inference 

site (𝐷 = 0).) The impact inferred from 𝐷 = 1 is represented as the red line in Figure 3.  

External validity is a concern in this case. When applied to 𝐷 = 0, the impact for 𝐷 = 1 

is subject to 𝐸𝑉𝑏𝑖𝑎𝑠 from confounded selection into locations. Bias in 𝑅𝐶𝑇𝐷1(𝐷 = 0) is 

represented as the difference between the inferred and benchmark (true) impact for 𝐷 = 0:  

𝐸𝑉𝑏𝑖𝑎𝑠 = 𝑅𝐶𝑇𝐷1(𝐷 = 0) − 𝐼𝑀𝑃𝐴𝐶𝑇(𝐷 = 0)    

= 𝑌(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝐷 = 1) − 𝑌(𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐷 = 1) 

−[𝑌(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝐷 = 0) − 𝑌(𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐷 = 0)]     (5) 

𝐸𝑉𝑏𝑖𝑎𝑠 is represented in Figure 3 as the length of the blue line, which is the difference in 

lengths of the red and green lines. This is the difference between the sites in average impact. 

Figure 3. Average impact inferred for site D=0 using the impact at site D=1 

 
Note: short horizontal bars representing average performance are black if the value is assumed measured, and empty 

(white) if the value is assumed unknown and therefore must be obtained from a comparison site.  
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Scenario 4: 

The situation is the same as in Scenario 3: the goal is to generalize impact to inference 

site 𝐷 = 0 where no one at that site has been assigned to the program.  

In this case, the treatment effect at 𝐷 = 0  is inferred using the difference in average 

performance between individuals assigned to treatment 𝑇 = 1 at 𝐷 = 1 and those not receiving 

treatment, 𝑇 = 0, which is everyone at the inference site 𝐷 = 0. This contrasts with Scenario 3 

because in this case we use information about performance at the inference site (i.e., in the 

absence of treatment) to arrive at a generalized causal impact quantity for that site5.  

The QED-based impact quantity is represented as the length of the red line in Figure 4.  

We represent this quantity as follows: 

𝑄𝐸𝐷2(𝐷 = 0) = 𝑌(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝐷 = 1) − 𝑌(𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐷 = 0)   (6) 

By how much is this quantity systematically different from the true impact at 𝐷 = 0?  

Bias in 𝑄𝐸𝐷2 is the difference between the inferred and benchmark (true) impact for 𝐷 = 0 (we 

shortened "𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡” to "𝑇" and "𝐶𝑜𝑛𝑡𝑟𝑜𝑙" to "𝐶" to allow a more compact representation):     

𝐵𝑖𝑎𝑠 =  𝑄𝐸𝐷2(𝐷 = 0) − 𝐼𝑀𝑃𝐴𝐶𝑇(𝐷 = 0) 

= 𝑌(𝑇, 𝐷 = 1) − 𝑌(𝐶, 𝐷 = 0) − [𝑌(𝑇, 𝐷 = 0) − 𝑌(𝐶, 𝐷 = 0)] 

= {[𝑌(𝑇, 𝐷 = 1) − 𝑌(𝐶, 𝐷 = 1)] + [𝑌(𝐶, 𝐷 = 1) − 𝑌(𝐶, 𝐷 = 0)]}

− [𝑌(𝑇, 𝐷 = 0) − 𝑌(𝐶, 𝐷 = 0)] 

= {[𝑌(𝑇, 𝐷 = 1) − 𝑌(𝐶, 𝐷 = 1)] − [𝑌(𝑇, 𝐷 = 0) − 𝑌(𝐶, 𝐷 = 0)]}

− [𝑌(𝐶, 𝐷 = 0) − 𝑌(𝐶, 𝐷 = 1)] 

= 𝐸𝑉𝑏𝑖𝑎𝑠 − 𝐼𝑉𝑏𝑖𝑎𝑠         (7) 

 
5 In our examples, we assume that at a site without an RCT everyone at a site either receives treatment or does not, and at a site 

with an RCT, everyone participates in the condition they are assigned to (everyone is a complier). This rules out additional 

selection effects within sites, which require more complex scenarios beyond the scope of this work. 
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Total (net) bias is represented in Figure 4 as the length of the red line minus the length of 

the green like. This is the same as the difference between 𝐸𝑉𝑏𝑖𝑎𝑠 (the top blue dashed line) and 

𝐼𝑉𝑏𝑖𝑎𝑠 (the bottom blue dashed line).  

Figure 4. Average impact inferred for site D=0 through a comparison with treated at site D=1 

 

Note: short horizontal bars representing average performance are black if the value is assumed measured, 

and empty (white) if the value is assumed unknown and therefore must be obtained from a comparison site.  

 

Implications of the Four Scenarios for Bias in Generalized Causal Inferences  

What do the results based on the four scenarios reveal? The goal is the same across all the 

scenarios: to arrive at an accurate value for average impact for the inference site 𝐷 = 0. The 

information that is available and that gets used across the four scenarios is summarized in Table 

1. 

In Situation 1 an uncompromised experiment at the site yields the unbiased impact for the 

inference site, which is optimal. In the situations 2 – 4, incomplete information about 
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𝐷 = 1 
Site

𝐷 = 0 

𝐸𝑉𝑏𝑖𝑎𝑠 

𝑵𝒆𝒕 𝑩𝒊𝒂𝒔 = 𝑬𝑽𝒃𝒊𝒂𝒔 − 𝑰𝑽𝒃𝒊𝒂𝒔 

 

Site 

𝑌(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 
 𝐷 = 1) 

𝑌(𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 
 𝐷 = 1) 

𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷 
 𝐼𝑀𝑃𝐴𝐶𝑇  

 

𝑌(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡,  𝐷 = 0) 

𝑌(𝑐𝑜𝑛𝑡𝑟𝑜𝑙,  𝐷 = 0) 

 𝐼𝑀𝑃𝐴𝐶𝑇  
(𝐷 = 0) 

 
 𝐼𝑀𝑃𝐴𝐶𝑇 

𝐷 = 1  
 

𝐼𝑉𝑏𝑖𝑎𝑠 
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performance in one or both conditions at 𝐷 = 0 requires using outcome data from the 

comparison site, 𝐷 = 1, to infer impact for 𝐷 = 0.    

Table 1. A summary of main quantities for scenarios1 - 4  
Scenario Quantity used to 

infer impact at 

𝐷 = 0 

Information 

missing at 

inference 

site (𝐷 = 0) 

Information 

used from 

inference site 

(𝐷 = 0) 

Information 

used from 

comparison 

site (𝐷 = 1) 

Is External 

Validity a 

concern for 

causal 

inference at 

𝐷 = 0? 

Susceptible 

to 𝐸𝑉𝑏𝑖𝑎𝑠 

or 𝐼𝑉𝑏𝑖𝑎𝑠? 

1 𝐼𝑀𝑃𝐴𝐶𝑇(𝐷 = 0)
= 𝑌(𝑇, 𝐷 = 0)
− 𝑌(𝐶, 𝐷 = 0) 

 

None 𝑌(𝑇, 𝐷 = 0),
𝑌(𝐶, 𝐷 = 0) 

None No Neither 

2 𝑄𝐸𝐷1(𝐷 = 0)
= 𝑌(𝑇, 𝐷 = 0)
− 𝑌(𝐶, 𝐷 = 1) 

𝑌(𝐶, 𝐷 = 0) 𝑌(𝑇, 𝐷 = 0) 

 

𝑌(𝐶, 𝐷 = 1) No 𝐼𝑉𝑏𝑖𝑎𝑠 

3 𝑅𝐶𝑇𝐷1(𝐷 = 0)
= 𝑌(𝑇, 𝐷 = 1)
− 𝑌(𝐶, 𝐷 = 1) 

𝑌(𝑇, 𝐷 = 0) None 𝑌(𝑇, 𝐷 = 1), 
𝑌(𝐶, 𝐷 = 1), 

Yes 𝐸𝑉𝑏𝑖𝑎𝑠 

4 𝑄𝐸𝐷2(𝐷 = 0)
= 𝑌(𝑇, 𝐷 = 1)
− 𝑌(𝐶, 𝐷 = 0) 

𝑌(𝑇, 𝐷 = 0) 𝑌(𝐶, 𝐷 = 0) 

 

𝑌(𝑇, 𝐷 = 1) 

 

Yes 𝐼𝑉𝑏𝑖𝑎𝑠, 

𝐸𝑉𝑏𝑖𝑎𝑠 

 

In situation 2, a QED-based estimate that uses control outcomes from 𝐷 = 1 potentially 

introduces IVbias. In both Situations 1 and 2, performance conditional on assignment to 

treatment is known for the inference site. The external validity of the treatment effect is not a 

concern, and the focus is on finding an accurate counterfactual to the treated group.  

In contrast to this, in Scenarios 3 and 4, for the inference site, 𝐷 = 0, we know only 

about performance in the absence of treatment. To infer impact there requires drawing on 

performance outcomes from a site where the treatment has been used (𝐷 = 1). This raises the 

question about the external validity of the inference, because performance under assignment to 

treatment must be generalized from someplace else. If we use the experiment-based result from 

𝐷 = 1 to infer impact at 𝐷 = 0  (i.e., 𝑅𝐶𝑇𝐷1(𝐷 = 0)) the only source of bias is 𝐸𝑉𝑏𝑖𝑎𝑠. If instead 

we infer impact to 𝐷 = 0 by comparing performance for the treated group at 𝐷 = 1 with 

performance of the non-treated group at 𝐷 = 0, (i.e., using 𝑄𝐸𝐷2) net bias is 𝐸𝑉𝑏𝑖𝑎𝑠 − 𝐼𝑉𝑏𝑖𝑎𝑠.  
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These results raise the following question: When external validity is a concern (Situations 

3 and 4), which is the less-biased option for inferring impact for 𝐷 = 0,  an RCT-based result 

from 𝐷 = 1 (i.e., 𝑅𝐶𝑇𝐷1(𝐷 = 0)) in Situation 3 that is subject to 𝐸𝑉𝑏𝑖𝑎𝑠, or a comparison group-

based result that contrasts performance under treatment at 𝐷 = 1 with performance in the 

absence of treatment at 𝐷 = 0  (i.e., 𝑄𝐸𝐷2(𝐷 = 0) in Situation 4, which is subject to 

𝑛𝑒𝑡 𝑏𝑖𝑎𝑠 𝐸𝑉𝑏𝑖𝑎𝑠 − 𝐼𝑉 𝑏𝑖𝑎𝑠)? When external validity is the concern, we have to ask, when is 

magnitude of net bias from 𝑄𝐸𝐷2 less than magnitude of bias for 𝑅𝐶𝑇𝐷1(𝐷 = 0)? In other words, 

under what conditions is it the case that: 

  √(𝐸𝑉𝑏𝑖𝑎𝑠 − 𝐼𝑉𝑏𝑖𝑎𝑠)2 < √𝐸𝑉𝑏𝑖𝑎𝑠2      (8) 

When this inequality holds, an experimental impact finding from elsewhere (𝑅𝐶𝑇𝐷1) is 

less preferred than one that uses a cross-site comparison (𝑄𝐸𝐷2). It may see counterintuitive that 

when generalization of a causal impact is the goal, a comparison-group-based result may be less 

biased than an experiment-based one, and therefore, preferable. We can make this idea more 

intuitive by considering that there is a tradeoff between 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2. The former is 

experimental, but is from outside the inference sample, whereas the latter is non-experimental, 

but half the solution for the impact uses data from the inference site (i.e., performance in the 

absence of treatment), which is an unbiased solution for performance in just one condition (i.e., 

we have the control-half of an unbiased impact quantity for the inference site 𝐷 = 0). There are 

pros and cons to each alternative.      

Additional specification of conditions under which a comparison group design is 

preferable. We explore graphically the conditions under which the impact based the cross-site 

comparison (𝑄𝐸𝐷2) is less biased than the experiment-based result from the comparison site 

(𝑅𝐶𝑇𝐷1). This condition is satisfied when the following relation holds. 
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(𝐸𝑉𝑏𝑖𝑎𝑠 − 𝐼𝑉𝑏𝑖𝑎𝑠)2 < 𝐸𝑉𝑏𝑖𝑎𝑠2       (9) 

 Representing the terms on a standard coordinate system (𝐼𝑉𝑏𝑖𝑎𝑠 = 𝑥, 𝐸𝑉𝑏𝑖𝑎𝑠 = 𝑦) we 

have:  

(𝑦 − 𝑥)2 < 𝑦2         

⇔ 𝑦2 − 2𝑥𝑦 + 𝑥2 < 𝑦2 

⇔ 𝑥2 − 2𝑥𝑦 < 0 

⇔ 𝑥2 < 2𝑥𝑦          (10) 

When 𝑥 > 0 this inequality is satisfied when the following condition is met:  

𝑥/2 < 𝑦          (11) 

When 𝑥 < 0 this inequality is satisfied when the following condition is met: 

𝑥/2 > 𝑦          (12) 

We observe that net bias in 𝑄𝐸𝐷2 is less than for 𝑅𝐶𝑇𝐷1 in the regions indicated by the 

arrows in Figure 5. (This result is confirmed in Appendix A).  

Figure 5: Comparison of internal and external validity bias and space over which 𝑅𝐶𝑇𝐷1 has less 

net bias than 𝑄𝐸𝐷2. 
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The result raises the question of what are the empirical distributions of 𝐸𝑉𝑏𝑖𝑎𝑠 and 

𝐼𝑉𝑏𝑖𝑎𝑠 across many studies. Figure 6 displays three hypothetical scenarios for the bivariate 

distribution, each demonstrating different coverage of the gray exclusion region.    

Figure 6: Three hypothetical distributions for 𝐸𝑉𝑏𝑖𝑎𝑠 and 𝐼𝑉𝑏𝑖𝑎𝑠: 

 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 

An empirical evaluation of levels of internal and external validity biases in generalized 

causal inferences based on 𝑹𝑪𝑻𝑫𝟏 and 𝑸𝑬𝑫𝟐  

 

Thus far, we have derived expressions for bias in 𝑅𝐶𝑇𝐷1 (i.e., when generalizing an RCT-

based impact quantity from 𝐷 = 1 to the inference site 𝐷 = 0), and for 𝑄𝐸𝐷2 (i.e., when using a 

comparison group based result that contrasts performance under treatment at 𝐷 = 1 with 

performance in the absence of treatment at inference site 𝐷 = 0 ). We have established the 

relationship between  𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2, and the conditions under which one exceeds the other in 

principle.   

Next, we discuss the potential to empirically study the properties of 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2 and 

their respective biases when used for causal generalization. Relevant questions include the 

following:   

1. What are average magnitudes of bias in 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2?  
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2. What is the joint distribution of bias in 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2?  

3. Does adjusting for effect of covariates reduce either form of bias?  

Further questions are:  

4. Do specific baseline variables that are imbalanced between sites affect both average 

achievement (confounders) and interact with treatment (moderators); If yes, does this 

imply that adjusting for their effects reduces both 𝐸𝑉𝑏𝑖𝑎𝑠 and 𝐼𝑉𝑏𝑖𝑎𝑠, and 

correspondingly bias in both 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2? 

5. How should we group studies when examining the distribution of the biases across them? 

For example, in education, when compiling results to produce empirical distributions of 

the type in Figure 6, should we aggregate results for all interventions and outcomes, or is 

it more informative to disaggregate studies based on the type of treatment (e.g., 

depending on whether curricula stress balanced literacy versus a phonics-first approach?), 

or outcome (e.g., math as opposed to English Language Arts) or the subgroups of sites or 

students in the studies?  

Studying the questions empirically: An example of WSC 

Background to WSC 

In this section we demonstrate an approach to addressing the first three of the questions 

posed above (the latter two are left for future study). Specifically, we apply WSC methods to the 

problem of evaluating external validity bias in generalized causal inferences when using 𝑅𝐶𝑇𝐷1 

or 𝑄𝐸𝐷2. This contrasts with the aims of standard WSC studies, which examine levels of and 

conditions for reducing internal validity bias in QEDs (i.e., 𝐼𝑉𝑏𝑖𝑎𝑠 in comparison group designs 

of type 𝑄𝐸𝐷1). Our extension of WSC methods to the question of external validity relates to 

other works by Hotz, et al., (2005),  Hotz, et al., (2006) and Jaciw, (2016a).    
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We build on the standard rationale for and procedures used with WSC studies, which we 

briefly review here. Typically, in WSC studies, first, an experimental estimate of the causal 

impact of a program is obtained. This serves as the benchmark impact quantity to be replicated 

(Scenario 1 considered earlier).  Second, a quasi-experimental estimate is constructed by 

replacing the outcome for the experimental control with one from a matched comparison group, 

(corresponding to 𝑄𝐸𝐷1 in Scenario 2.) Third, 𝐼𝑉𝑏𝑖𝑎𝑠 is estimated using the observed difference 

between the QED-based and experimental benchmark estimates. Fourth, different design and 

analytic strategies are applied to evaluate if the bias can be reduced or eliminated. If yes, then the 

QED-based estimate effectively replicates the experimental benchmark. (Of the more than 60 

traditional WSC studies [Wong et al., 2018], notable ones include Lalonde (1986); Bloom et al., 

(2005), in jobs training, and Unlu et al., (2021), and Wilde et al., (2007), in education.6) 

In our application we use a version of WSC that evaluates bias in the context of cross-site 

comparisons in multisite trials (e.g., Bloom et al, 2005; Wilde et al., 2007). The approach 

assumes an uncompromised multisite trial involving N sites, in which each site supplies an 

unbiased impact estimate. That is, the trial yields N experimental benchmark values.  In this 

version of WSC, a non-experimental estimate is constructed for a given site by replacing the 

outcomes in one condition – usually the control – with a result for the same condition from one 

or more of the other sites. This gives N estimates of both non-experimental estimate 𝑄𝐸𝐷1 and 

corresponding 𝐼𝑉𝑏𝑖𝑎𝑠. Following the standard WSC approach, the QED-based result for each site 

is compared to its experimental benchmark, and the difference between them is summarized 

across sites using average absolute bias. In this application, bias is attributable to selection into 

sites within the trial (Bloom et al., 2005).  

 
6 Recently Steiner et al., (2019) have advanced WSC methods through a framework that takes into account of all 

factors potentially affecting causal replication.  
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Extension of WSC to evaluating bias in 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2 

Our application evaluates bias in 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2 relative to the experimental 

benchmark impact for each site. For 𝑅𝐶𝑇𝐷1, the impact estimate that is generalized to a given site 

out of N is the average of impacts across the remaining N-1 sites. (Each of the component N-1 

impacts is experimental for the site from which it is obtained, but involves a non-experimental 

comparison when generalized to the remaining inference site(s).) The resulting estimate 

corresponds to 𝑅𝐶𝑇𝐷1, susceptible to 𝐸𝑉𝑏𝑖𝑎𝑠. For 𝑄𝐸𝐷2, the impact estimate that is generalized 

to a given site out of N is the difference between the average of performance of the treatment 

groups across all other (N-1) sites, and control performance at the inference site. This 

corresponds to 𝑄𝐸𝐷2, which is susceptible to net bias 𝐸𝑉𝑏𝑖𝑎𝑠 – 𝐼𝑉𝑏𝑖𝑎𝑠.  

  Each of the N sites yields an estimate for each of the two biases.  Using the idea that 

𝐼𝑉𝑏𝑖𝑎𝑠 is distributed as “non-experimental mismatch error” (Bloom, 2005), Jaciw (2016a) and 

Jaciw et al (2021) show that the average level of bias across the sites – that is the average 

discrepancies of the QED estimates from corresponding benchmark impacts – can be 

summarized in terms of the cross-site variability in outcomes and impacts. In our application the 

average of magnitude of bias in 𝑅𝐶𝑇𝐷1 is expressed as “Root Mean Squared Bias”: 

𝑅𝑀𝑆𝐵(𝑅𝐶𝑇𝐷1)/𝑆𝐷 =
1

𝑆𝐷
√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐼𝑚𝑝𝑎𝑐𝑡)     (13) 

(This is analogous to the expression in Equation 5, which is 𝐸𝑉𝑏𝑖𝑎𝑠 associated with 

𝑅𝐶𝑇𝐷1 for the two-site case).  

The average of magnitude of bias in 𝑄𝐸𝐷2 is expressed as:  

𝑅𝑀𝑆𝐵(𝑄𝐸𝐷2)

𝑆𝐷

1

𝑆𝐷
√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐼𝑚𝑝𝑎𝑐𝑡) + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐶𝑜𝑛𝑡𝑟𝑜𝑙) + 2𝐶𝑜𝑣(𝐼𝑚𝑝𝑎𝑐𝑡, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙))     (14)   
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(This is analogous to Equation 7, which is 𝐸𝑉𝑏𝑖𝑎𝑠 − 𝐼𝑉𝑏𝑖𝑎𝑠 associated with 𝑄𝐸𝐷2 for the 

two-site case). “Control” denotes average site performance for the control group. 

We standardize the values by dividing them by the standard deviation of the outcome 

variable (𝑆𝐷). This allows a comparison of 𝑅𝑀𝑆𝐵 within and across studies and with the overall 

average impact for a study, as well as with meaningful benchmarks such as expected annual 

growth (Hill et al., 2008) which are often expressed in standardized effect size units.  

Data and Results.  

As a demonstration, and proof of concept, we summarize 𝑅𝑀𝑆𝐵 from two multisite trials 

in education. The first is a multisite trial of Alabama Math Science and Technology Initiative 

(AMSTI) (Newman et al., 2012), the other of Tennessee Class Size Reduction Experiment 

(Project STAR) (Finn et al., 1990)7. STAR has been used in a prior WSC study by Wilde et al. 

(2007). Table 2 shows, in bold, estimates of 𝑅𝑀𝑆𝐵(𝑅𝐶𝑇𝐷1)/𝑆𝐷 and 𝑅𝑀𝑆𝐵(𝑄𝐸𝐷2)/𝑆𝐷 for two 

outcomes in STAR (reading and math) and one outcome in AMSTI (reading). We also display 

these results in Figure 7.  (For completeness, in Table 2 we also include 𝑅𝑀𝑆𝐵(𝑄𝐸𝐷1)/𝑆𝐷, with 

the result not bolded).  

Table 2 displays results prior to and after adjusting for effects of site-level covariates 

(listed in Appendix B). (Detailed results for AMSTI and STAR reading have been provided 

elsewhere (Jaciw et al., 2021); Our application of WSC to the STAR math data is new, and we 

report detailed results in Supplement A.)  

 

 

Table 2. Estimates of 𝑅𝑀𝑆𝐵 for 𝑄𝐸𝐷1, 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2. 

 
7 For AMSTI we use results from analysis conducted during the original study.  
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 Site-level 

Covariate 

adjustments 

𝑅𝑀𝑆𝐵(𝑄𝐸𝐷1)/
𝑆𝐷  

𝑹𝑴𝑺𝑩(𝑹𝑪𝑻𝑫𝟏)/
𝑺𝑫  

𝑹𝑴𝑺𝑩(𝑸𝑬𝑫𝟐)/
𝑺𝑫  

AMSTI Reading 

(N=40 sites, 

n=17922 students) 

Without 0.420**** 0.099* 0.432**** 

With 
0.074**** 0.079*** 0.044* 

STAR Reading 

(N=73 sites, n=3452 

students) 

Without 0.414*** 0.171* 0.411*** 

With 
0.186* 0.139 0.262* 

STAR Math 

(N=73 sites, n=3452 

students) 

Without 0.438**** 0.271** 0.439 *** 

With 0.296**** 0.234* 0.356** 

With 0.186* 0.139 0.262 
****p<.01, ***p<.05, **p<.10, *p<.20 

Note: Estimates of RMSB are expressed in standardized effect size units for the distribution of the outcome variable. 

 
 

Figure 7. Estimates of 𝑅𝑀𝑆𝐵 /SD for 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2 prior to and with covariate adjustments 

 
 

𝑅𝑀𝑆𝐵̂(𝑄𝐸𝐷2)/𝑆𝐷 

𝑅𝑀𝑆𝐵̂(𝑅𝐶𝑇𝐷1)/𝑆𝐷 

Light gray dot: STAR Math 
Mid-gray dot: STAR Reading 
Black dot: AMSTI 
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The observed values of 𝑅𝑀𝑆𝐵(𝑅𝐶𝑇𝐷1)/𝑆𝐷 are .099 (p=.172), .171 (p=.173), and .271 

(p=.067) for AMSTI(reading), STAR(reading) and STAR(Math), respectively, before covariate 

adjustments and .079 (p=.033), .139 (p=.252), and .234 (p=.106), after. For 𝑅𝑀𝑆𝐵(𝑄𝐸𝐷2)/𝑆𝐷  

they are .432 (p<.001), .411 (p=.010), and .439 (p=.013), respectively, before covariate 

adjustment, and .044 (p=.131), .262 (p=.163), and .356 (p=.057) with covariate adjustments.  

Two noteworthy findings are: (1) the levels of bias are substantively important prior to 

and after covariate adjustments when compared to empirical benchmarks, for example, in terms 

of average annual expected growth in achievement (Hill et al., 2008), and achieved sample-wide 

average impacts for the studies (.07 SD for AMSTI and .24 for STAR); (2) importantly for the 

current work, 𝑅𝐶𝑇𝐷1 has less bias than 𝑄𝐸𝐷2 prior to covariate adjustments; however, the values 

of the two types of estimates are closer to each other after conditioning on effects of covariates, 

and 𝑄𝐸𝐷2 is less than 𝑅𝐶𝑇𝐷1 for AMSTI. (We include p values in reporting of results in Table 2, 

however, we recommend caution when using them as indicators of remaining bias because they 

reflect sampling error in the estimates, which reflects the number of degrees of freedom available 

in estimation. We advise examining p values with a view to the magnitudes of the estimates. A 

thorough review of metrics for evaluating levels of bias in the context of WSC studies is given in 

Wong et al. (2019)8).   

Conclusions about the results  

 
8 In this work we have not elaborated on our approach to estimating the quantities in Table 2. Details of the 

approach are provided in (Author, XXXX). In brief, we used Hierarchical Linear Models (HLM) (Raudenbush and 

Bryk, 2002) with Random Intercept Random Coefficient (RIRC) models (Jaciw et al., 2021; Miratrix et al., 2021) to 

estimate the variance and covariance components in Equations 12 and 13. HLM has the advantage of removing 

withing-site between-student variability (at level-1) from estimates of variation in impact and achievement and 

covariance between impact and achievement across sites.  In this work we also have not discussed the issue of 

exclusion of the inference site from the cross-site average against which it is compared. Systematically removing 

each site from the average, a “one-out” approach, is discussed in Jaciw (2016a) and Orr et al., (2019), and it is shown 

to have limited effect when the number of sites is sufficiently large (Author, XXXX) as is the case in this study.   
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Earlier in this work we established that bias in 𝑄𝐸𝐷2 can be less than for 𝑅𝐶𝑇𝐷1 in 

principle. Our empirical study above is a demonstration of an application of WSC methods to 

evaluate the question of the comparative magnitudes of bias for 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2. With the six 

datapoints of Figure 7 we observe that bias in 𝑄𝐸𝐷2 is larger than in 𝑅𝐶𝑇𝐷1 except in one case 

(AMSTI with covariates); however, covariate adjustments result in convergence between RCT- 

and QED-based estimates in the accuracy of causal generalizations.  

As with any application of WSC methodology, a given study yields a limited set of 

datapoints, and replication with multiple studies is necessary to address the question decisively. 

Therefore, more results from a collection of multisite trials are needed to determine levels of bias 

in 𝑅𝐶𝑇𝐷1 and 𝑄𝐸𝐷2 with greater confidence. We remind the reader that between 1985 and 2018, 

over 66 WSC studies have been conducted to evaluate levels of 𝐼𝑉𝑏𝑖𝑎𝑠 (Wong et al., 2018), 

which has led to valuable empirical summaries and general conclusions about levels of and 

conditions for 𝐼𝑉𝑏𝑖𝑎𝑠,  as well as about design and analytic solutions for reducing this bias 

(Bloom et al., 2005; Cook et al., 2008; Glazerman et al., 2003; Wong et al., 2018). The current 

work sets in motion similar empirical research into conditions for 𝐸𝑉𝑏𝑖𝑎𝑠, and the closely 

related question about when it is advisable to use 𝑅𝐶𝑇𝐷1 compared to 𝑄𝐸𝐷2. That is, the 

questions posed in this work may be answered through a similar cumulative acquisition of 

evidence.  

Conclusions 

In this work we have established that when generalization of causal effect estimates is the 

goal, internal and external validity must be considered together because neither takes precedence 

in a logical sense. The two forms of validity are unified because both are susceptible to threats 

from selection. Whether an RCT-based result from elsewhere (𝑅𝐶𝑇𝐷1) is less biased than one 
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involving a comparison group design that involving outcomes from inference and comparison 

locations (𝑄𝐸𝐷2) depends on a selection mechanism that addresses the role of confounders and 

moderators of impact operating simultaneously. The question of whether the same variables act 

as confounders and moderators, and therefore account both for 𝐸𝑉𝑏𝑖𝑎𝑠 and 𝐼𝑉𝑏𝑖𝑎𝑠, is earmarked 

for future study.   

We believe that the unification of 𝐸𝑉𝑏𝑖𝑎𝑠 and 𝐼𝑉𝑏𝑖𝑎𝑠 through effects of selection gives 

justification to reject the idea that RCTs are the gold standard, or provide gold standard results. 

An RCT is a gold standard only if the causal inference is intended for the sample itself (or with a 

probability sample, which is rare and hard to achieve in educational research [Tipton and Olsen, 

2018]). When selection effects that influence both average achievement and impact 

heterogeneity are present, the idea of a gold standard study design loses its potency. A possible 

consequence of this work is the reduction of the authoritativeness of results based on RCTs and 

elevation of QEDs, and serious consideration of QEDs as equally authoritative under certain 

conditions. Understanding those conditions is an important aspiration.   

Aside from running many WSC studies to build an empirical joint distribution of 𝐼𝑉𝑏𝑖𝑎𝑠 

and 𝐸𝑉𝑏𝑖𝑎𝑠, can we say anything else about when, in principle, we might expect 𝑄𝐸𝐷2 to be less 

biased than 𝑅𝐶𝑇𝐷1? The role of the covariance term in (𝑅𝑀𝑆𝐵(𝑄𝐸𝐷2)) is important in this 

respect. If negative, it reduces net bias. (The WSC result for AMSTI with covariate adjustments 

is one example.) Under what conditions do we expect a negative correlation between site 

deviations in average achievement and site deviations in average impact? This will happen when 

impact increases with decreasing incoming achievement within sites across which comparisons 

are made. For such interventions, generalizations that use comparison group designs (𝑄𝐸𝐷2) may 

be more-valid.  
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We end this work by emphasizing the need for WSC replication efforts to build 

cumulative knowledge of the relationship between 𝐼𝑉𝑏𝑖𝑎𝑠 and 𝐸𝑉𝑏𝑖𝑎𝑠. Standard WSC studies 

come with caveats and tests that apply here also. They include the following considerations: 

a. Results from WSC studies may underestimate bias because they are limited to samples 

that have selected to join a study, such as a multisite trial (Jaciw, 2016a, Orr et al., 2019). 

b. Results, including bias, should be reported using policy-relevant metrics (Wong et al. 

[2018] reviews several metrics, with recent additional development in Orr et al., 2019). 

c. Choice of confounders and moderators must be made smartly, and preferably reflects 

theory of selection (Smith et al., 2005); Each moderator uses up a degree of freedom, 

which may affect statistical power, and possibly conclusions about impact heterogeneity. 

d. Incoming levels of the outcome measure are considered important determinants of bias in 

standard WSC studies (Glazerman et al., 2003;  Unlu et al., 2021). It should not be 

automatically assumed that the pretest is as important in accounting for 𝐸𝑉𝑏𝑖𝑎𝑠 – it is 

obvious that the pretest is predictive of average posttest performance, but it is not obvious 

that it routinely interacts with treatment to produce impact heterogeneity. That will 

depend on the program itself (as discussed in Jaciw [2016a, 2016b]).  

e. Sensitivity analyses are recommended. As evidence accumulates from WSC studies that 

jointly address 𝐼𝑉𝑏𝑖𝑎𝑠 and 𝐸𝑉𝑏𝑖𝑎𝑠, it is important to establish that the findings are not 

being driven through a particular or arbitrary approach to analysis (e.g., choice of 

estimator or estimand). 

f. Related to the previous point, replication generally should take into account factors 

producing heterogeneity in average achievement and impact (Steiner et al., 2019). 

Adjusting for effects of confounders and moderators may be counterproductive if bias 
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reflects other sources of variation, ranging from researcher biases to changes of “effect 

generating processes” (Steiner et al., 2019) that moderators do not account for.    
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Appendix A. Verification of exclusion regions in Figure 6 

 

Impact based the cross-site comparison (𝑄𝐸𝐷2) is less biased than the experiment-based 

result from the comparison site (𝑅𝐶𝑇𝐷1) when the following relation holds. 

(𝐸𝑉𝑏𝑖𝑎𝑠 − 𝐼𝑉𝑏𝑖𝑎𝑠)2 < 𝐸𝑉𝑏𝑖𝑎𝑠2       (A1) 

 Representing the terms on a standard coordinate system (𝐼𝑉𝑏𝑖𝑎𝑠 = 𝑥, 𝐸𝑉𝑏𝑖𝑎𝑠 = 𝑦) we 

have: 

 (𝑦 − 𝑥)2 < 𝑦2         (A2) 

When 𝑥 > 0, this inequality is satisfied if the following condition is met:  

𝑥/2 < 𝑦          (A3) 

When 𝑥 < 0, this inequality is satisfied if the following condition is met: 

𝑥/2 > 𝑦          (A4) 

 

Case 1: 𝑿 = 𝒂 > 𝟎 

a. Show that when ∆> 0,  𝑦 =
𝑎

2
+ ∆ satisfies the condition in (A4).  

𝐿. 𝑆. = (
𝑎

2
+ ∆ − 𝑎)2 = (∆ −

𝑎

2
)2 = (∆2 − 𝑎∆ +

𝑎2

4
) < (

𝑎

2
+ ∆)2 = (

𝑎2

4
+ 𝑎∆ + ∆2) = 𝑅. 𝑆.  

⟺ (∆2 − 𝑎∆ +
𝑎2

4
) < (

𝑎2

4
+ 𝑎∆ + ∆2) 

⟺ −𝑎∆< 𝑎∆ 

Because 𝑎 > 0 and ∆> 0, this is true. 

b. Show that when ∆< 0, 𝑦 =
𝑎

2
+ ∆ does not satisfy the condition in (A4). 

The derivation is the same as above: 

−𝑎∆< 𝑎∆ 

Since 𝑎 > 0 and ∆< 0, this is never true. 

 

Case 2: 𝑿 = 𝒂 < 𝟎 

a. Show that when ∆> 0,  𝑦 =
𝑎

2
+ ∆ does not satisfy the condition in (A4).  

The derivation is the same as above: 

−𝑎∆< 𝑎∆ 

Since 𝑎 < 0 and ∆> 0, this is never true. 

b. Show that when ∆< 0, 𝑦 =
𝑎

2
+ ∆ satisfies the condition in (A4). 

The derivation is the same as above 

−𝑎∆< 𝑎∆ 

Since 𝑎 < 0 and ∆< 0, this is true. 
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Appendix B. Covariates used in analysis 

STAR Experiment 

Covariates at the school level are school averages of uncentered student-level covariates (gender, 

eligibility for Free or Reduced Price Lunch, minority [non-White] status, the years of teaching 

experience of a student’s teacher, whether the student’s teacher holds a Master’s degree or 

higher, and end of kindergarten scores on tests of math and reading) and variables indicating 

school urbanicity (whether a school is inner-city, suburban, rural or urban.) 

AMSTI Experiment  

Covariates at the school level are baseline achievement in reading, proportion male, proportion 

eligible for Free or Reduced Price Lunch, proportion of students who are non-White, and 

proportion of English Learners. 
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Supplement A: More detailed results for analysis of STAR reading outcomes in second 

grade  

A1. Variance components estimates prior to covariate adjustments (J=73 sites (schools), 

N=314 teachers, n=3,452 students). 

Covariance Parameter Estimates 

Covariance  

Parameter 
Level Estimate 

Standard 

Error 
Z Value Pr Z 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐶𝑜𝑛𝑡𝑟𝑜𝑙) School (Site) 349.96 77.719 4.5 <.0001 

𝐶𝑜𝑣(𝐼𝑚𝑝𝑎𝑐𝑡, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙) School (Site) -32.237 52.4885 -0.61 0.5391 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐼𝑚𝑝𝑎𝑐𝑡) School (Site) 59.7474 63.2987 0.94 0.1726 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
Teacher nested in 

school 
148.21 30.1673 4.91 <.0001 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
Student nested in 

teacher 
1448.83 36.5533 39.64 <.0001 

 
 

A2. Variance components estimates with covariate adjustments (J=73 sites (schools), N=314 

teachers, n=3,452 students). 

Covariance Parameter Estimates 

Covariance  

Parameter 
Level Estimate 

Standard 

Error 
Z Value Pr Z 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐶𝑜𝑛𝑡𝑟𝑜𝑙) School (Site) 70.7429 30.7587 2.3 0.0107 

𝐶𝑜𝑣(𝐼𝑚𝑝𝑎𝑐𝑡, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙) School (Site) 15.1589 30.1399 0.5 0.615 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐼𝑚𝑝𝑎𝑐𝑡) School (Site) 39.2772 58.8632 0.67 0.2523 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
Teacher nested in 

school 
147.37 29.6705 4.97 <.0001 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
Student nested in 

teacher 
1448.36 36.5277 39.65 <.0001 

Note. Covariates at the school level are school averages of student-level covariates (gender, eligibility for Free or 

Reduced Price Lunch, minority [non-White] status, the years of teaching experience of a student’s teacher, whether 

the student’s teacher holds a Master’s degree or higher, and end of kindergarten scores on tests of math and reading) 

and variables indicating school urbanicity (whether a school is inner-city, suburban, rural or urban.) 

 

 

 


