
P
os
te
d
on

25
O
ct

20
18

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
31
12
4/
ad

va
n
ce
.7
22
20
1
0.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
77
/2
51
52
45
91
88
05
7
55

Two-Lines: A Valid Alternative to the Invalid Testing of U-Shaped

Relationships with Quadratic Regressions

Uri Simonsohn1

1Affiliation not available

October 25, 2018

Abstract

Many psychological theories predict U-shaped relationships: the effect of x is positive for low values of x, but negative for

high values, or vice-versa. Despite implying merely a change of sign, hypotheses about U-shapes are tested almost exclusively

via quadratic regressions, imposing an arbitrary functional form assumption that can lead to a 100% false-positive rate, e.g.,

concluding with certainty that y=log(x) is U-shaped. Estimating two regression lines, one for low and one high values of x, allows

testing for a sign change without a functional form assumption. To set the breakpoint between the lines, I introduce the Robin

Hood algorithm. It delivers higher power to detect U-shapes than all other breakpoint setting alternatives considered. The paper

includes simulations and re-analyses of published results. The two-line test can be performed at http://webstimate.org/twolines
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arbitrary functional form assumption that can lead to a 100% false-positive rate, e.g., concluding 

with certainty that y=log(x) is U-shaped. Estimating two regression lines, one for low and one high 

values of x, allows testing for a sign change without a functional form assumption. To set the 

breakpoint between the lines, I introduce the Robin Hood algorithm. It delivers higher power to 
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Is there such thing as too many options, virtues, or examples in an opening sentence? 

Researchers are often interested in such U-shaped relationships, where the effect of x on y is 

hypothesized to be positive for low-values of x, but negative for high values of x (or vice versa). 

Just among papers published online in 2016, for instance, I found at least two articles testing U-

shaped relationships in each of the following four journals: JEP:G, Psychological Science,  

JPSP, and the Journal of Applied Psychology.1   

Here I identify, and provide a remedy for, a large and pernicious disconnect between the 

predictions that social scientists make when they hypothesize that a relationship is U-shaped, and 

the statistical test social scientists run to examine if a relationship is U-shaped. 

In particular, when a social scientist hypothesizes that a relationship, y=f(x), is U-shaped, 

she is merely hypothesizing that f(x) contains a sign change: for low values of x its effect on y is 

positive, f’(x)>0, while for high values of x the effect is negative, f’(x)<0. Or vice versa. As Lind 

and Mehlum (2010) write in their methodological paper on U-shape testing "to test . . .  for the 

presence of a U shape . . . we need to test whether the relationship is decreasing at low values . . . 

and increasing at high values" (p.110).    

Just a sign change is what the U-shape hypotheses from the eight papers in the opening 

paragraph predict, what all articles reviewed by Grant and Schwartz (2011) examining U-shaped 

effects in psychology hypothesize, what the classic Yerkes Dodson “law” involves, etc. 

Nevertheless, when it comes to testing empirically whether f(x) is U-shaped, social 

scientists do not just examine if it exhibits a sign change. They instead estimate a quadratic 

                                                 
1The references for these articles are (i) Payne, Brown-Iannuzzi, and Loersch (2016), (ii) von Bastian, Souza, and 

Gade (2016), (iii)  Choi and Kirkorian (2016), (iv) Loschelder, Friese, Schaerer, and Galinsky (2016); (v) Jaspers 

and Pieters (2016), (vi)  Josef et al. (2016); (vii) Koopmann, Lanaj, Wang, Zhou, and Shi (2016), and (viii) Wilson, 

DeRue, Matta, Howe, and Conlon (2016) 
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regression of the form: y=bx+cx2 and then rely on its estimates, which are valid only if the 

arbitrarily assumed quadratic functional form is exactly true, to valuate if the results imply a sign 

change in f(x).  

We are so used to testing U-shapes with quadratic regressions that researchers often use 

the two terms as synonymous, but U-shapedness and quadratic describe distinct features of 

mathematical functions.2 For instance, the relationship between the standard deviation and the 

variance is quadratic, V=(SD)2, but it is not U-shaped. Conversely, y=log(x) - 2x, is U-shaped 

but not quadratic: the values of y are not proportional to the square of the values of x.3  

Assuming a quadratic functional form, when the functional form is not quadratic, can 

elevate false-positive and false-negative rates of U-shapes. The former are especially likely when 

the true function, f(x), flattens out (e.g., a ceiling effect), because the quadratic is unable to 

generate a long plateau and so, when its functional form is forced on the data, the quadratic 

generates a spurious sign-change.  For instance, the quadratic regression can, under realistic 

circumstances, conclude with near certainty that y=log(x) is a U-shaped relationship; a 100% 

false-positive rate (see Figure 2). It can also plausibly obtain 100% false-negative rate, 

concluding with certainty a blatant U-shaped relationship is not U-shaped (see Figure 3). 

In this paper I propose we rely, instead, on two regressions lines to test for the presence 

of a U-shaped relationship, one for low values of x, the other for high values of x, verifying one 

slope is positive and the other negative. The advantage is that regression lines can diagnose the 

                                                 
2 Haans, Pieters, and He (2016) provide a thorough and thoughtful review of the empirical literature testing U-

shaped relationships in management, and yet they quite explicitly treat U-shaped and quadratic relationships as 

synonymous (see their abstract and footnote 1).  The methodological paper by Miller, Stromeyer, and Schwieterman 

(2013) on testing interactions for curvilinear relationships distinguishes between merely curvilinear and U-shaped 

relationships, but for both they assume a quadratic function.  Lind and Mehlum (2010)'s paper on U-shape testing 

does distinguish between U-shaped and quadratic functions, but all their demonstrations involve estimating 

quadratic regressions. 
3 The function f(x)=log(x)-2x is U-shaped because its slope,  f’(x)=1/x-2, is positive for x<.5 and negative for x>.5. 
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sign of the average effect without making functional form assumptions about f(x). This two-lines 

approach has on occasion been used as an informal follow-up robustness test to the estimation of 

a quadratic regression (see e.g., Iribarren, Sharp, Burchfiel, Sun, & Dwyer, 1996; Qian, Khoury, 

Peng, & Qian, 2010; Seidman, 2012; Ungemach, Stewart, & Reimers, 2011).  

The contributions of the paper are (i) explaining why we must discontinue relying on 

quadratic regression, in any way, to test hypotheses involving U-shaped relationships, (ii) 

formalizing the two-lines approach to testing U-shapes, and (iii) introducing the “Robin Hood” 

algorithm to identify the breakpoint for the two-lines, obtaining higher statistical power for U-

shape detection than all alternatives considered.  

 

Defining "U-shaped" 

The symbol used to represent U-shaped relationships, the letter "U", is symmetric, 

consists of an uninterrupted line, includes a flat portion in the bottom, and includes both a 

negatively sloped and a positively sloped section. When social scientists refer to a relationship as 

"U-shaped" however, they imply only that last property: the sign change.  

When data are not continuous, e.g., taking only 5 possible values, researchers and 

methodologists anyway use the "U-shape" label to describe an effect that flips sign (see e.g., 

Cohen, Cohen, West, & Aiken, 2003, p. 576; Simonton, 1976). When the function is not 

symmetric, e.g., exhibiting a negative effect for ages 15 to 75 years, and a positive one only for 

ages between 75 and 95 years, researchers use the "U-shape" label to describe the sign change as 

well (Jaspers & Pieters, 2016).  When the functional form lacks a flat portion and the effect 

switches abruptly from negative to positive, researchers also use the "U-shaped" label to describe 

the sign change (Choi & Kirkorian, 2016, see their Figure 3).  Relying on the same terminology, 

http://webstimate.org/twolines
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in this paper I use the "U-shape" label to imply only a sign change in f(x), without implying any 

of the other characteristics of the letter "U" to f(x).  

Neither the two-lines test proposed here, nor the quadratic regression based tests of U-

shapedness, statistically distinguish between symmetric vs asymmetric U-shapes, continuous vs 

discontinuous U-shapes, or U-shapes with vs. without flat portions (the quadratic regression 

implicitly assumes f'(x) is continuous, but does not test whether it is). Thus, researchers 

interested in assessing these additional features of f(x) would require running additional 

statistical tests, not just U-shapedness test, whether they rely on the quadratic regression or on 

the two-lines test. 

 

 

Two average slopes 

In line with the previous subsection, let's formally define a function, y=f(x), as U-shaped, 

if there exists an x value, xc, within the set of possible x values, such that the average effect of x 

on y is of opposite sign for x≤xc vs x≥xc. The null hypothesis is that, Ho: No such xc value exists, 

and the alternative hypothesis, HA: At least one such xc value exists.4   

To test if the effect of x on y changes sign for x≤xc vs x≥xc, we need to set the value of 

xc, and then compute two average slopes, one for x≤xc  and one for x>xc. I will discuss the issue 

of setting the breakpoint later on, for now let’s focus on the benefits of using two regression lines 

to estimate the two average slopes. 

                                                 
4 One could refine the definition to preclude more than one sign change (e.g., not classifying a W-shape as U-

shaped), and could implement the testing by recursively applying the U-shape test to the two segments behind the U-

shaped pattern. But, such refinement adds complexity and does not seem useful for the vast majority of cases where 

a U-shaped relationship is hypothesized; more than one sign change seems like a rather unusual prediction in the 

social sciences.   

http://webstimate.org/twolines
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Linear regressions compute the average slope in the data for the effect of x on y, 

regardless of the underlying functional form (see e.g., Gelman & Park, 2008). 5 Therefore, to 

compute two average slopes, we may simply estimate two regression lines (one for x≤xc and 

another for x≥xc).  We can then reject the null of absence of a U-shape if the slopes are of 

opposite sign and are both statistically significant. 

It is very important to understand that the regression estimate is the average slope for any 

functional form and thus we are not assuming the true function is linear when computing the 

average this way. To illustrate this point, say the true relationship is y=x2, not linear, and the data 

consist of three observations, x=1,2,3, and thus y=1,4,9. A linear regression will correctly 

recover the average slope, which is 4 in this example. In particular, the slope between the first 

two points is (4-1)/(2-1)=3, between the last two (9-4)/(3-2)=5, and between the first and last 

(9-1)/(3-1)=4. So we have (3+5+4)/3=4. Similarly, if y=x4, so that now y=1,16,81, �̂� will be 40, 

the average slope among those three points.6 

 While the regression estimates will correspond to the average slope in the range of data 

no matter what underlying function form f(x) has, this does not mean that the two-lines test will 

be valid under all circumstances or that it constitutes a non-parametric test.   

First, if the true relationship had more than one sign-change, for example, if it were W-, 

N-, or X-shaped, the two-lines test may correctly but misleadingly report that one portion has on 

                                                 
5 In particular, regression estimates are the weighted average of the slope of every pair of data points, weighting 

each pair by the square of the distance between predictor values. For instance, in the simple case with one predictor: 

�̂� =∑
𝑦𝑖−𝑦𝑗

𝑥𝑖−𝑥𝑗
(𝑥𝑖 − 𝑥𝑗)2

𝑖,𝑗 / ∑ (𝑥𝑖 − 𝑥𝑗)2
𝑖,𝑗 . See e.g., Gelman and Park (2008).  

6 You can verify running this code in R:  

x=1:3 

y=x^4 

lm(y~x) 
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average a positive slope and the other a negative one, leading a researcher to erroneously classify 

a W-, N- or X- shaped relationship as U-shaped (for more on this, see limitations section).   

Second, because the two-lines test relies on linear regression, anything that affects the 

validity, interpretability, bias, robustness, efficiency, etc., of linear regressions, also affects the 

validity, interpretability, bias, robustness, efficiency, etc. of the two-lines test. For example, lack 

of independence across observations leads to under-estimated standard errors in regression 

results in general, and to higher false-positive U-shape results with the two-lines test in 

particular. 

  

The misuse of quadratic regressions to test for U-shapedness 

The sophistication with which results from quadratic regressions are interpreted, for U-

shape testing, can be classified into three levels; they differ in how many additional calculations 

are conducted upon estimation.  

  

 

Level 1: is the quadratic term significant? 

The most basic approach involves checking if the estimates of a and b, in y=ax+bx2, 

imply a U-shaped function and if b’s estimate is statistically significant. This approach is 

advocated in some prominent textbooks. For example, Cohen, Cohen, West, and Aiken (2003) 

write, “The [quadratic] coefficient is negative [and significant]. . ., reflect[ing] the hypothesizes 

initial rise followed by decline” (p.198; emphasis added). The significant coefficient need not, in 

fact, imply a U-shape relationship.7  

                                                 
7 In a later section Cohen et al. do warn against blindly relying on the quadratic terms writing “it is always important 

to examine the actual data against both the polynomial regression and some nonparametric curve such as lowess” 

[lowess: locally weighted scatter-plot smoothing]. (p.207). I do not, moreover, believe the authors would have fallen 

prey to such fallacious conclusions, but many readers of the text probably have.  
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A JPSP paper by Simonton (1976), with about 150 citations, illustrates. He established 

correlates of the eminence of ‘geniuses’.  One key inference was that “ranked eminence [is a] 

curvilinear inverted-U function of education” (abstract, p. 218).  The point estimates of interest, 

within a larger specification, were y=4.872 x  - 11.96 x2 where y is the measure of eminence, and 

x of education (see estimates in his Table 2; p. 223).  

 

Fig. 1. Example of significant quadratic term not associated with actual U-shape.  
R Code to reproduce figure: https://osf.io/9uwxg/  

 

 

Figure 1 shows that, within the range of possible values, the regression results do not 

imply a U-shape. For every possible value of x, higher x is associated with lower y.  Only for 

negative (impossible) values of x is the sign positive and hence the overall pattern U-shaped. 

Note that the estimated correlation between education and eminence is opposite of the intuitive 

causal effect one may expect. 

 

 

Level 2: is the sign-flip within the range of values? 

http://webstimate.org/twolines
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The discussion of Figure 1 above is an example of this additional step and some 

published papers carry it out as well. For example, Berman, Down, and Hill (2002) write “the 

value [at which the sign flips] is actually above any value observed in the data, suggesting that, 

although negative returns are a theoretical possibility, they are not encountered.” (p. 23).  

But, we need to take into account sampling error. The true relationship is, we assume, 

y=ax+bx2, but we don’t observe a and b, we observe estimates, �̂� and �̂�, and as estimates they 

contain error, and so does, therefore, our estimate of the point at which the effect of x on y flips 

sign (-�̂�/2�̂�).8 

 

Level 3: is the sign-flip “statistically-significantly” within the range of values? 

Noting that a quadratic term is simply an interaction of a variable with itself (see e.g., 

McClelland & Judd, 1993, p. 382), we can take into account sampling error into the analyses of 

quadratic regression estimates in general, and of the point where the effect of x on y flips sign in 

particular, as we do with any regression interaction. In particular, we may estimate the effect of x 

on y, and its confidence interval, or p-value, for different values of x. This general approach to 

analyzing interactions was first introduced by Johnson and Neyman (1936).  The approach is 

sometimes known as pick-a-point or spotlight when applied to a handful of x-values, and as 

floodlight or Johnson-Neyman procedure, when applied to all of them, or to the critical x values 

where the slope is vs is not statistically significant (Aiken & West, 1991; Preacher, Curran, & 

Bauer, 2006; Spiller, Fitzsimons, Lynch Jr, & McClelland, 2013). 

                                                 
8 If f(x) =ax+bx2, then f’(x) = a+2bx. Solving for f’(xc)=0 leads to xc= -a/2b. 
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In recent years, a few papers have explicitly suggested relying on this Johnson-Neyman 

procedure to analyze quadratic regressions results for testing U-shaped relationships (Lind & 

Mehlum, 2010; Miller et al., 2013; Spiller et al., 2013). 9 

Importantly, even this more sophisticated use of quadratic regressions to test for U-

shapedness, is invalid.  The reason is that the regression results hinge, and therefore so do the 

Johnson-Neyman calculations, on the assumption that the true relationship between x and y is 

exactly quadratic. Figure 2 provides realistic examples where the assumption is not met, and the 

conclusions are erroneous. 

For instance, panel A shows a scenario where the true relationship is y=log(x) and where 

a quadratic regression would result in �̂� =13.96x-10.45x2. In this equation, the effect of x on y is, 

dy/dx=13.96- 2*10.45x. When x=.25, the effect of x is positive, 8.735, but when x=.75, in 

contrast, negative, -1.71.  Now, of course that result is wrong, the effect of x is never negative 

when y=log(x), but it is estimated as negative because we are incorrectly assuming the 

relationship is quadratic. Specification error is behind the erroneous conclusion. Panels B & C 

provide additional examples. 

                                                 
9 Lind and Mehlum (2010) accompanied their (economics) paper with a STATA module, utest, that runs their 

proposed U-shape test. The program is executed after running a regression. When run after a quadratic regression, as 

all the examples in their paper do, their test is equivalent to the analysis advocated for in psychology textbooks, e.g., 

Aiken and West (1991, p. 77), see Supplement 4 for numerical demonstration of the equivalence. But Lind & 

Mehlum appear to have developed their test independently. The procedures by Spiller et al. (2013) and Miller et al. 

(2013) are, as these authors make clear, also directly derivable from the formulas in Aiken and West (1991, p. 77).   
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Fig. 2.  Examples of quadratic regressions misdiagnosing U-shapes.  
Panels A & B are obtained from a single simulated dataset with N=100000 where x is obtaining by squaring random draws from 

the U(0,1) distribution. Large samples without noise were used to convey the point that quadratic regressions get it wrong even 

asymptotically. Panel C uses data come from the Center for Diease Control.   

R Code to reproduce figure https://osf.io/3psev/  
 

 

 

Assuming a quadratic relationship may also lead to false-negatives, failing to diagnose a 

U-shape relationship that is present, even with an infinite sample size. This will occur when the 

true relationship is U-shaped but deviates sufficiently from the quadratic.  See Figure 3. 

The intuition for the poor performance of the quadratic regression in Figures 2 & 3 is that 

it minimizes the sum of squared errors, (�̂� –y)2, without taking into account overall-shape. If 

obtaining a better fit requires outputting a quadratic function that generates a non-existent U-

shape, or missing a real U-shape, there is no ‘penalty.’   
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Fig. 3.  Example of quadratic regression false-negatively concluding U-shape is absent.  
A single dataset with N=100000 observations was created, x was generated by drawing at random from U(0,1) distribution and 

squaring the result. R Code to reproduce figure https://osf.io/3psev/   
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What about diagnostic tests? 

 

Many textbooks indicate researchers should conduct diagnostic tests before interpreting 

their regression results, are those enough to protect us from wrong inferences about U-shapes 

based on quadratic regressions? I argue below the answer is no. 

First, in practice, researchers do not run or at least report diagnostics on their regressions.  

Second, regression diagnostics qualitatively assess the general adequacy of the model, but we 

want to quantitatively assess the adequacy of the conclusion about U-shapedness. Figure 4 

illustrates the problem, where regression diagnostics for true-positive and a false-positive U-

shaped relationships are indistinguishable from one another.  

Third, it is not clear what researchers should do when they diagnose their quadratic 

regression as misspecified. If not a quadratic model, then what model should they estimate? 

There is no default alternative, researchers would need to try multiple functional forms until one 

seems to -subjectively- fit well enough. Say running higher order polynomials, interrupted log 

regressions, various interactions, etc. This leads to two problems. First, when those more 

complicated models are estimated, how would the researcher go about testing for U-shapedness?  
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Fig. 4. Diagnostic plots are not diagnostic about U-shapedness 
Notes: The data were generated by drawing 400 observations from U(0,1) for x and adding noise N(0,1) to the true y-value (see top-row for true 

model). Each column has the same dataset for the three charts, but they differ across columns. 
R Code to reproduce figure: https://osf.io/kuj3d/   

 

 

For example, if we fit a fourth order polynomial to the y=log(x) data from Figure 2A, we 

obtain the following estimate: y=44 x – 142 x2 + 189 x3 – 86 x4. Should we interpret this 

equation as evidence for or against a U-shape?  Perhaps the most sensible thing to do is to 

compute the implied marginal effect of x on y for every value of x, and then average them for 

two ranges of x. But now we have a two-lines test, except that we are averaging fitted data, 

through an arbitrary functional form, instead of raw data. 
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In addition to the inherent ambiguity of results from higher order polynomials or other 

arbitrary functional form assumptions, and likely invalidity of such assumption, the mere fact 

that there are so many alternative procedures opens the door to over-fitting in general and p-

hacking in particular. 

 

The two-line solution 

Because U-shaped hypotheses state merely that the effect of x on y changes sign for low 

vs high x values, we should test U-shaped hypotheses by merely testing if the effect of x on y 

changes sign for low vs high x values. This involves computing two average slopes, which in 

turn is done by estimating two regression lines, one for x≤xc the other for x≥xc, where xc is the 

breakpoint separating the two regions. One may increase statistical efficiency by simultaneously 

estimating both lines in a single regression, relying on what is often referred to as an interrupted 

regression (see e.g., Marsh & Cormier, 2001, p. 7). Specifically, interrupted regressions conform 

to the following general formulation: 10  

y = a + b xlow + c xhigh + d high + Z Bz                                 (1) 

Where: xlow=x-xc if x≤xc, and 0 otherwise   

xhigh=x-xc if x≥xc, and 0 otherwise   

high=1 if x≥xc, and 0 otherwise. 

Z is the (optional) matrix with covariates, and Bz its vector of coefficients. 

 

  

                                                 
10 If d is forced to be 0, thus not allowing a discontinuity at xc, the regression is called segmented instead of 

interrupted (see e.g., Muggeo, 2003). Forcing d=0 introduces bias onto both �̂� and �̂�.  For U-shape testing purposes, 

one must rely on interrupted rather than segmented regressions, include high as a predictor. 
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Setting the breakpoint 

We can set the breakpoint seeking to maximize fit, or, seeking to maximize statistical 

power. That is, seeking to arrive at a model that fits the data best, or at one that has the highest 

probability of diagnosing f(x) as U-shaped when it is, without exceeding the nominal false-

positive rate when it is not.  

Maximizing fit. Setting the breakpoint to maximize fit involves answering this question: 

“Given that we will fit the data with two lines, which breakpoint leads to two lines that best fit 

the data overall?” There is a literature examining how to set breakpoints, in segmented and 

interrupted regressions, seeking to fit the data as well as possible, e.g., via maximum likelihood 

(see e.g., Hansen, 2000; Molinari, Daures, & Durand, 2001; Muggeo, 2003; Stasinopoulos & 

Rigby, 1992). But that is not what we want to do here.  

We are not fitting two lines, with a possible discontinuity between them, because we 

believe the real relationship has that shape and we want to approximate it as well as possible. 

Rather, we are only estimating regressions to compute average slopes in two sets of x-values. 

Thus, we want to find the breakpoint that answers a different question: “If the true 

relationship were U-shaped, if there really were a sign-change for the effect of x on y within the 

set of observed values, which breakpoint maximizes the chance we will detect it?”  Figure 5 

illustrates the conflict between these two goals. Moreover, later on, when evaluating the 

performance of different breakpoints, I will show that the breakpoint that maximizes fit (in that 

case R2), obtains lower statistical power than that obtained with the proposed Robin Hood 

procedure. 
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Fig 5. The breakpoint that maximize overall fit does not necessarily maximize power to detect a 

U-shaped relationship. 
Note: the figure depicts the breakpoint for two regression lines that maximizes overall fit, using Muggeo (2003)’s procedure, and 

contrasts it with the breakpoint actually associated with the x-value at which the sign of the effect of x on y changes. R Code to 

reproduce figure https://osf.io/w3m2u/  

 

 

Maximizing power.  Without making strong assumptions about (a) the functional form of 

the relationship between x and y, f(x), (b) the distribution of x, and (c) the distribution of the 

error term, it does not seem possible to arrive at a theoretically optimal breakpoint that 

maximizes statistical power for U-shape testing. The approach I propose here, instead, is 

algorithmic, designed to have high power, rather than demonstrably maximal power, for a very 

broad range of situations (but presumably not all). I developed the algorithm keeping in mind 

three key ideas: (i) because the two-lines test requires both slopes to be significant, to increase its 

power requires increasing the power of the statistically weaker of the two lines. Segments of an 

interrupted regression, in turn, have more power when (ii) they are steeper (bigger effect), and 

(iii) they include more observations within their segment (smaller standard error). Thus, 

conceptually, the algorithm seeks to set a breakpoint that will increase the statistical strength of 

the weaker of the two lines, by placing more observations in that segment, without overly 
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attenuating its slope. I refer to it as the Robin Hood algorithm, for it takes away observations 

from the more powerful line and assigns them to the less powerful one. 

I rely on Figure 6 to describe the Robin Hood algorithm.  Every panel involves the same 

true underlying relationship between x and y, depicted by the solid line in Panel A, and the same 

single random sample, depicted with the same scatterplot in every panel. The top row illustrates 

increasingly more sophisticated approaches for setting the breakpoint, culminating in the 

proposed Robin Hood algorithm in the right-most column. The bottom row the resulting two-line 

regression estimates.  

For illustrative purposes, consider attempting to obtain two steep slopes by setting xc, the 

breakpoint, at the x value associated with the most extreme observed y value (first column in 

Figure 6). An obvious problem is that individual observations, especially the most extreme one, 

can be greatly influenced by random error. Panel A, for example shows that the x value 

associated with the most extreme observation, x=.78, falls outside the range with maximum true 

y values, .5<x<.7.   

We can cancel much of the aforementioned random error by estimating a flexible model 

of f(x), e.g., a polynomial, local, kernel, or spline, regression, and use the model’s fitted values 

instead of the observed values to identify the most extreme observations. 

I rely on splines here, because they easily accommodate covariates, can be used to 

construct confidence intervals for f(x), and do not rely on functional form assumptions (see 

section 3.2.1 in Wood, 2006).11 In particular, Panel B depicts the fitted values, �̂�s, obtained from 

a cubic spline regression, and showcases the consequences of moving the breakpoint from the x 

                                                 
11 In particular, using the R library mgcv, the command gam(y~s(x,bs="cr")) estimates a cubic spline predicting the 

dependent variable y with the predictor x. The option bs="cr" specifies a cubic spline be used, instead of the default 

which is a “plate regression spline” (Wood, 2006, p. 219). 
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associated with the most extreme observed y, to the x associated with the most extreme fitted 

value: �̂�max.  

In the example from Figure 6, and presumably in many psychological phenomena, 

relationships are U rather than V shaped, having regions with a relatively flat maximum. It seems 

therefore sensible to identify the set of most extreme �̂�s rather than the single most extreme �̂�max. 

Here I define �̂�s within one standard error of  �̂�max as that set and refer to it as �̂�flat. Thus, every 

�̂� in �̂�flat is within one standard error of �̂�max. The solid line in Figure 6C depicts �̂�flat.   

We now have a set of candidate xc values, those associated with �̂�flat. The goal is to 

choose the one among them that we expect to give higher statistical power to detect a U-shape, 

and thus the one among them that we expect to give higher statistical power to the weaker of the 

two lines within the interrupted regression. The algorithm pursues that goal by setting xc so that 

it allocates a disproportionate share of the observations in �̂�flat  to the weaker line; by increasing 

the number of observations in that segment, it reduces its standard error, increasing its statistical 

power.  

The algorithm proceeds in two steps. In the first step it identifies which of the two lines is 

statistically weaker. In the second step it sets the breakpoint by allocating observations in �̂�flat to 

the first vs second line in inverse proportion to their relative statistical strength. Specifically, in 

the first step the algorithm sets the x-value that is the midpoint of �̂�flat as an interim breakpoint. It 

estimates an interrupted regression and computes the (absolute value of the) test-statistics for 

both lines, t1 and t2, and then sets the breakpoint for the second step in inverse proportion to these 

ts. That is, the breakpoint becomes the t2/(t1+t2) percentile of the x-values within �̂�flat.  
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Fig 6. Different procedures to identify the breakpoint, and their consequences. 
Notes: All panels are based on the same random sample (gray scatterplots) based on the true relationship between x and y, solid line in 

Panel A. The effect of x on y is positive up to x=.5, flat up to x=.7, and negative onwards. Top row shows 4 alternative ways to set the 

breakpoint, bottom row the resulting two-line regressions. Fitted values in panels B-D obtained by smoothing the scatterplot with a cubic 

spline. Flat region in C&D is where �̂�s are within 1 standard error of the max(�̂�). R Code to reproduce figure: https://osf.io/zdert/  
 

To build an intuition: if both lines are about equally strong, statistically speaking, with 

roughly identical test statistics, the breakpoint will remain roughly at the midpoint of �̂�flat. If the 

t-value of the first line in the first step were, say, 3 times that of the second line, then the 

breakpoint would be set at the 75th percentile of xs within �̂�flat, so that the second (weaker) line 

has 75% of  �̂�flat and the first line the remaining 25%.  The intuition, again, is that the algorithm 

allocates additional observations from within the �̂�flat region to the weaker line so that its 

standard error gets smaller. 

Returning to Figure 6. Panel G shows that first step, where the midpoint of �̂�flat is the 

breakpoint. It leads to t1= 25.07 and t2=1.86. Computing the ratio we obtain t2/(t1+t2)=6.9% so 

the breakpoint is set at the 6.9th percentile of the x values associated with �̂�flat, which in that 
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sample corresponds to x=.59. Using that breakpoint, we obtain the final interrupted regression 

used to test the presence of a U-shape, and in this case,  we obtain a much stronger result for the 

second slope, p2=.006.   

In sum, the Robin Hood algorithm consists of the following 5 steps. 

1) Estimate a cubic spline for the relationship between x and y  

2) Identify ŷmax, the most extreme internal fitted value. 

3) Identify �̂�flat, the set of ŷ values within a standard error of ŷmax  

4) Estimate an interrupted regression using as the breakpoint the median x value within �̂�flat. The regression 

will result in two test statistics, one for each line. Let their absolute values be t1 and t2 

5) Set as the breakpoint at t2/(t1+t2) percentile of the x values associated with �̂�flat.   

 

It is important to note that because the breakpoint is set algorithmically within a set of 

candidate breakpoints, it conveys no interpretable meaning on its own. We should not conclude 

that the breakpoint is “the” point where the sign of the effect switches. The specific sign switch 

point, to the extent it actually exists, it not estimated precisely with the two-lines test.  

 

 

Performance of two-line test 

False-positive and False-Negative U-Shapes 

 I conducted simulations for a broad range of scenarios (see notes for Figures 8 & 9 for 

details) to assess type-1 and type-2 errors for examining U-shapes with a quadratic regression vs. 

the two-line test. For the two-lines approach I considered not just the breakpoint identified by the 

Robin Hood algorithm, but also for various alternative approaches, including maximizing fit. 

http://webstimate.org/twolines


Two-Lines 
The app: http://webstimate.org/twolines  

22 

 

For the quadratic regression approach I report results for the most sophisticated use of it, 

the procedure proposed by Lind and Mehlum (2010), which is equivalent to that proposed by 

Spiller et al (2013), and by Miller et al (2013), and by Aiken & West (1991).12  

Figure 7 reports false-positive estimates.  The left panel includes simulations where the 

true relationship is expected to lead to the most false-positive U-shapes: an initial strong effect, 

followed by a long flat segment.   The right panel for a (monotonic) logistic function.  

The results from both panels are highly consistent. They show that the quadratic 

regression approach to testing U-shaped relationships has an unacceptably high false-positive 

rate for a very broad range of scenarios. Often 100%.  The two-line approach in general, and the 

Robin Hood procedure for setting the breakpoint in particular, show, in contrast, acceptable 

performance. False positive rates are typically below the 5% nominal level (as is typically the 

case when the null hypothesis is a composite null (see e.g., Bowman, Jones, & Gijbels, 1998)) 

and even the post-hoc most extreme scenario raises it only barely above it (and these are 

necessarily over-estimates as we are selecting them ex-post because they were the highest value).  

In Supplement 1 (https://osf.io/6c5qb/) I explore factors that lead to the higher false-

positive rates, finding that scenarios that use the distribution of x suggested by McClelland 

(1997), see Figure 7 captions for a description, and those with greater levels of random noise, 

have higher false-positive rates. I run additional simulations that rely on that distribution of x and 

have even higher levels of noise, finding that the false-positive rate does not increase any further.  

Figure 8 reports statistical power estimates for two general functional forms (Figure 9 

shows a few examples of the individual simulations behind the left panel of Figure 8).  Because 

the quadratic regression obtains unacceptably high false-positive rates, Figure 8 does not include 

                                                 
12 Lind & Mehlum consider other functional forms in the theory section of their paper, but all their examples involve 

quadratic regressions. 
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power results for it. For statistical inference, we should select the most powerful test, among 

those that satisfy the nominal false-positive rate. To make this concrete, imagine a test consisting 

of a coin that reads “U-shape” on either side: flipping the coin leads to 100% power, but it is not 

a statistical test we would want to use. 

 

Fig. 7. False-Positive Rates for Detecting U-shapes  
Notes: In the left panel each simulated scenario involves a relationship between x and y consisting of two segments. 

For x<xc, the marginal effect of x on y is positive, for x≥xc it is zero. The scenarios combine the following 

parametrizations: (i) the distributions of x (normal, uniform, beta with left, beta with right skew, optimized for the 

quadratic as in McClelland (1997)) 13, (ii) the effect of x on y is y=x vs y=log(x), that is, linear vs log-linear, (iii) 

sample sizes of 100, 200, or 500, (iv) σ in e~N(0,σ) with σ being 100%, 200% or 300% of the SD(y) before adding 

e, and (v) the value of xc: 30th, 50th percentile of x. The full combination of parameters leads to 180 scenarios. For 

the right panel the same parametrizations for sample sizes, and amount of noise are used. Instead of defining slopes 

and cutoffs, the scenarios differ in the values of b in the logistic function, with b=.5, 1.5, and 2.5, for a total of 135 

scenarios.  All alternative two-line estimations are for interrupted regressions (allowing a discontinuity at the 

breakpoint).14  

R Code to reproduce simulations: https://osf.io/wdbmr/, figure itself: https://osf.io/q4ysc/   

 

                                                 
13 In particular, 25% of observations are x<.2, 25% x>.8, and 50% are .4<x<.6 (McClelland, 1997; Table 1). This 

distribution is said to maximize power to detect a U-shape if the true relationship is quadratic and the maximum 

value is obtained at “intermediate values of X” (p.9).  
14 For each scenario 1000 simulations were run. If the false-positive rate was >4% for Robin Hood, an additional 

10,000 simulations were run. 
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To facilitate comparisons with the proposed Robin Hood procedure, the share of 

statistically significant results for each procedure are presented, in Figure 8, as the difference 

with the Robin Hood’s procedure. Both panels of Figure 8 also paint a highly consistent picture. 

For the vast majority of scenarios considered, Robin Hood provides a moderate to large 

improvement in statistical power, and for only a small minority it is not the single most powerful 

procedure, and even in those cases, the power losses are minimal.  In addition to the superior 

performance of the Robin Hood procedure, two general patterns are worth highlighting. First, 

estimating three rather than two lines leads to dramatic losses of statistical power; the intuition is 

that the observations allocated to the middle line do not contribute to the precision of the slope 

estimates involved in the testing of the hypothesis.  Second, the least powerful approach to 

setting the breakpoint for a two-line estimation, consists of the approach that has been previously 

proposed by several authors, including me, setting the breakpoint based on the quadratic 

regression's most extreme fitted value (Haans et al., 2016; Iribarren et al., 1996; Simonsohn & 

Nelson, 2014). 
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Fig. 8  Statistical Power for Detecting U-shapes, relative to Robin Hood  
Notes: In the left panel each simulated scenario involves three segments, with cutoffs at xc and xd, with xd>xc  For 

x<xc, the marginal effect of x on y is positive. When xc≤x≤xd the marginal effect of x is zero, and when x>xd the 

marginal effect is negative.  The scenarios combine the same parameters as Figure 8A, crossed with the value of xd : 

30th, 50th, 70th, or 90th percentile of x, and  the slope of the negative effect of x on y when x>xd being 25%, 50%, 

100% or 200% the magnitude of the slope when x<xc.  The full combination of parameters leads to 2520 scenarios 

(See Figure 9 for a few examples). For the right panel the same parametrizations for sample sizes, and amount of 

noise are used. Instead of defining slopes and cutoffs, the scenarios differ in the values of k, with k=2,3,4, or 5, and 

the values of a, which are set so that the resulting U-shape provides a sign change at 50%th, 60th, 70th, 80th or 90th 

quantile of x of observed values.  Each of the 3420 scenario results are based on 500 or 2500 simulations, depending 

on the extremity of results after 500.  

R Code to reproduce simulations: https://osf.io/wdbmr, figure itself: https://osf.io/rbvw2/   
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Fig. 9  A representative subset of 80 of the 2520 scenarios used to compare power across 

procedures to set the breakpoint in Figure 8 (left panel). The solid lines represent the underlying 

true functions, the gray dots the single random draw with the specified distribution of x values 

and of noise.  R Code to reproduce figure https://osf.io/m7avc/  

 

Demonstrations 

Figure 10 applies the two-line test to two examples in the published literature that appear 

to arrive at false-positive U-shape conclusions because they relied on quadratic regressions. 

Panels A&B revisit the analyses by Sterling, Jost, and Pennycook (2016) who wrote (in their 
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secondary analyses section), that “those who were moderate in terms of their support for the free 

market appeared to be more susceptible to bullshit than extremists in either direction.” (p.356).  

They arrive at this inverted-U conclusion because the quadratic term in the regression is 

significant (p=.026; Figure 10A). 

 I successfully reproduced their results analyzing their posted data.  Figure 10B, however, 

shows that the second line, while negative, is far from significant (p=.41). Keep in mind that if x 

and y were uncorrelated for high values of x, that is, if the true second slope were flat, 50% of 

estimates will be negative (and 45% of them at least as steeply as observed; that’s the meaning of 

the p=.45). The data are inconclusive: consistent with a U-shaped relationship, consistent with 

ideology and bullshit receptivity being uncorrelated among higher values of the former, and 

consistent with a monotonic effect. Again, the U-shape prediction was secondary to the authors. 

The paper’s core prediction is consistent with the first line in Panel B: “free market ideology was 

significantly but modestly associated with bullshit receptivity” (abstract). 
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Fig. 10 Quadratic vs Two-Lines applied to data from published papers 
Notes: In A & B each dot depicts a participant in a survey, y is how profound participants rated a series of “vague and 

meaningless statements,” x their endorsement of “neoliberal” principles. In C & D each dot is a country, y is its FIFA 

rating, x the share of players in the country’s team that play for a top professional team (e.g., Arsenal). Thin continuous 

lines in B and D are fitted values from cubic splines.  

R Code to reproduce figure: https://osf.io/3jbzk/  

 

 Continuing with Panels C & D: Swaab, Schaerer, Anicich, Ronay, and Galinsky (2014), 

in their Study 2, examined the relationship between the number of elite players in a country’s 

soccer team and its international FIFA rating. Their results, they write, “revealed a significant 

quadratic effect of top talent: Top talent benefited performance only up to a point, after which 

the marginal benefit of talent decreased and turned negative” (p.1584; emphasis added). I 

successfully replicate those results with independently obtained data (see Panel C), but in Panel 

D the second line is also positive (albeit far from significant). These data do not support the 

conclusion that there is such thing as ‘too-much-talent’ in international soccer.  
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Limitations.  

 Limitation 1. Asymptotic properties not examined. In this paper I have proposed an 

algorithm and evaluated its performance via simulation in small samples, without deriving its 

theoretical asymptotic properties. Moreover, the breakpoint is set with an algorithm without 

known theoretical properties. 

Limitation 2. X, N, and W shapes.  The two-lines test is expected to perform well as long 

as the true relationship of interest has at most two regions where the impact of x on y has 

opposite signs, that is, if the relationship of interest is: (i) flat overall (no effect), (ii) (weakly) 

monotonic, or (iii) U-shaped.  It will not perform well, at least in terms of interpretability, if the 

true relationship has more than two regions with different signs, for instance, if it is N-shaped, 

X-shaped or W-shaped, rather than U-shaped. These relationships, it is worth noting, invalidate 

the interpretability of quadratic regressions as well. The non-parametric smooth line that 

accompanies the proposed app to run the test may be used as a partial solution to this limitation, 

alerting users if the data look N or X or W shaped.  

Limitation 3. Imprecise size. The precise "size", or expected "false-positive rate", of the 

two-lines U-shaped test is not known, cannot be guaranteed to be 5%, for any specific dataset, 

for two reasons (see Supplement 8 for a detailed discussion). The first reason is that the null 

hypothesis of the absence of a U-shape is what is known as a "composite null." The second 

reason is that the Robin Hood algorithm slightly overfits. Nevertheless, the false-positive rate of 

the two-lines test is expected to be generally lower than the nominal rate, and almost never 

higher than 6% for a nominal α=5%. 
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Conclusions 

 

The use of quadratic regressions to test U-shaped relationships is as invalid as it is 

common. To interpret the results of a quadratic regression we need to know the true functional 

form is indeed quadratic, something that's virtually impossible in social science. The two-lines 

test of U-shaped relationships is arguably the most straightforward test of the hypothesis of 

interest: that the average effect of x on y is of opposite sign for high vs low values of x. It makes 

no assumptions about the functional form of f(x). The Robin Hood procedure to set the 

breakpoint for the two lines achieves notably higher power than any alternative considered.  

Table 1 summarizes the contents of the supplementary materials. 

 

Table 1.  

Index of supplementary materials (available from https://osf.io/6c5qb/)  

 

Section Pages 

Supplement 1. Identifying factors that increase false-positive rate for  

                         Robin Hood 
2-5 

Supplement 2. Histograms with difference in power for each approach in 

Figure 9 in the paper.  
6 

Supplement 3. Two-line test with discrete x values 7-8 

Supplement 4. Equivalence of Lind & Melhum (2010) with formulas in 

psychology textbooks, when applied to quadratic regressions. 
9-11 

Supplement 5. Estimating an interrupted regression does not require nor involve 

assuming y=f(x) is two straight lines with a discontinuity 
12 

Supplement 6. Two-lines vs monotonicity & nothing wrong with quadratic 

terms as covariates 
13 

Supplement 7. Accompanying quadratic regression with robustness tests is 

insufficient to properly use it for U-shape testing 
14-15 

Supplement 8. Why the false-positive rate of the two-lines test is not exactly 

known for any given data generating process. 
16-17 
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