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Abstract

Randomized experiments (RCT s) rule out bias from confounded selection of participants into conditions by design. Quasi-

experiments (QEs) are often considered second-best because they do not share this benefit. However, when results from RCT s

are used to generalize causal impacts, the benefit from unconfounded selection into conditions may be offset by confounded

selection into locations. In this work we show that this tradeoff can lead to situations where estimates from QEs are less-biased

from selection than are estimates from uncompromised RCT s. We establish the conditions theoretically, demonstrate the idea

empirically, and discuss the implications of the results.
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Hold the Bets! Do Quasi- and True Experimental Evaluations Yield Equally Valid Impact 

Results When Effect Generalization is the Goal?   

It is normal for policy-makers and practitioners to ask about the potential for programs to 

achieve impact for an inference population that they are directly concerned with. Ideally, an 

uncompromised RCT would be conducted in their specific context to answer the question 

decisively. However, if an RCT is not possible, they may look to other sites, where the program 

has been used, to support an inference about what the causal impact may be for their site.   

Consider two options for doing this. The first, which is the more obvious and standard one, is 

to use an RCT-based result from one or more study sites where the program has been evaluated – 

the “generalized from” site(s) – to infer impact for the “generalized to” site(s). This result may 

be adjusted for possible differences between sites in the distribution of baseline characteristics 

that moderate the impact. This approach has the advantage that at the “generalized from” site, the 

result is not biased from confounded selection into conditions; however, because it involves a 

cross-site comparison of outcomes, the result may be biased from confounded selection into 

locations in terms of characteristics that moderate the effect (Hotz et al., 2005).  

A second option is to make a cross-site comparison to infer just the missing outcome at the 

inference site. There are two possible situations for this. In the first scenario, the treatment has 

been used at the inference site, and the goal is to compare the performance given treatment at 

that site, to the performance in the absence of treatment using a comparison group from another 

site that has not used the program. This is the standard observationalist’s application of a non-

equivalent comparison group design (CGD) (Shadish et al., 2002). In the second scenario, the 

treatment has not been used at the inference site, and the goal is to compare the performance 

without treatment at that site, to the performance in the presence of treatment using a group from 
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another site that has used the program. This is akin to a CGD, except it uses performance under 

treatment at another site to infer counterfactual performance to the group that has not received 

treatment at the inference site.  

The second option has the advantage that is uses an estimate of half the true impact result for 

the inference site (e.g., achievement in the presence of treatment for the first scenario, and 

performance in the absence of treatment for the second scenario); however, because this option 

involves a cross-site comparison of outcomes, it may be biased from confounded selection into 

locations on characteristics that either affect average achievement or moderate program impact 

(Hotz et al., 2005). 

The reader may well wonder why one would ever use the comparison group-based 

approaches (the second option) in place of the RCT-based one (the first option). The result based 

on an uncompromised RCT has the advantage of being unbiased from selection at the study site, 

and therefore seems advantageous, even if it is achieved at a different site than the one for which 

the generalized impact is sought. Certainly, intuition suggests that adjusting results from an RCT 

is the better option. In this work we show that, contrary to intuition, this is not always so. This 

finding is important because the less-biased option should be chosen whenever possible; 

therefore, it is critical to establish the conditions under which one approach yields less biased 

results than the other.  

This work proceeds as follows. First, we consider three fundamental scenarios for inferring 

the average causal impact of a program for a study site. We use both graphical displays and 

formal notation to represent bias for each generalization scenario. Second, we establish the 

conditions under which comparison group-based generalizations are preferable to RCT-based 

solutions. We also discuss the plausibility of these conditions. Third, we develop methods for 
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conducting an empirical test of the question. Fourth, we provide an empirical demonstration. 

Fifth, we discuss limitation, draw conclusions, and consider next steps    

To make this work accessible to a wider readership of program evaluators, we focus both 

on the intuition behind the main idea and on the formalism. To do this we use both graphical 

representations and more-technical notation, and the main ideas are interpretable using either 

approach.   

Background 

 

Recently there has been a groundswell in advances in methods of evaluation for 

generalizing impact findings from experiments. The starting point of these methods is an impact 

finding from an RCT conducted at one or more study sites. The generalization step involves 

adjusting the RCT-based result so that it reflects the local conditions for the inference population. 

Reweighting is a chief example (Schochet et al., 2014). The approach adjusts for differences 

between the study sample and the inference population in the distribution of moderators of 

impact1. Adjustments may also be made in terms of an index that summarizes, on one dimension, 

the effects of multiple moderators. Subclassification methods (e.g., Tipton, 2013) are an example 

of this. 

Such RCT-based approaches reflect an internal validity-first orientation: the starting point 

is an estimate of average impact from a true experiment, which is assumed to be internally valid. 

External validity – which addresses the extent to which a causal relationship holds over 

variations in persons, settings, outcomes or treatment variants (Shadish, et al., 2002 p. 256) – is 

achieved after, and is based on the impact finding from a completed RCT.  This is consistent with 

a specific orientation in program impact evaluations that internal validity is the “sine qua non”, 

 
1 Moderators of impact are baseline characteristics of persons, or other units, that are associated with changes in the 

effect of treatment. 
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that is, “the basic minimum without which any experiment is uninterpretable” (Campbell et al., 

1963, p. 5, in Shadish, et al., p. 97). The logic is that we should first establish the causal 

relationship between variables, and only then address questions about the reach of the causal 

inference to contexts beyond the study. 

The RCT-based approach, however, is not the only one. Consider the case where a 

principal has implemented a program school-wide and would like to know if the program had an 

average positive impact on student achievement at her school. With the RCT-based approach to 

generalization described above, she would look for an average impact finding from an RCT 

conducted elsewhere, preferably from a locale similar to hers. She might then reweight the 

impact result from the remote site to more-closely reflect the distribution of characteristics of 

individuals for her site. Alternatively, using a quasi-experimental (QE-based) approach, she may 

estimate impact for her site by comparing the average performance at her site, in which everyone 

has received treatment, to contemporaneous performance from one or more similar locales where 

the program has not been used. This is a standard non-equivalent comparison design (Shadish, et 

al., 2002), with the inference locale being the treated site (i.e., the comparison is with a sample 

that provides a plausible counterfactual value for what the performance at the inference site 

would have been in the absence of treatment.)   

 The comparison group-based approach accommodates also an alternative “reversed” 

scenario, where the program has not been used at the principal’s (inference) site, and where she 

would like to know about the potential impact that could be achieved for her site. In this 

situation, the principal can again use the RCT-based result, or, applying the comparison group-

based strategy, she can infer impact to her site by comparing average performance at other 

similar locales, where the program has been used, against the average performance (in the 
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absence of treatment) at her site. This approach is a version of the non-equivalent comparison 

design (Shadish, et al., 2002), where the comparison is made with a treated group to support a 

causal inference for the untreated site (i.e., the comparison is with a sample that provides a 

plausible counterfactual value for what the performance at the inference site would have been if 

the treatment had been used at that site.)  

For either of these scenarios, the RCT-based result has the advantage that it is unbiased 

for the source sample (assuming the RCT has not been compromised in some way.) The success 

of generalization depends on completely identifying and adjusting for the effects of factors that 

produce a difference in impact between the experimental and inference sites (Cole & Stuart, 

2010; Hotz et al., 2005; Imai et al., 2008).  On the other hand, the comparison-group based 

approach has the advantage that it uses information from the actual inference site; however, the 

comparison with another site puts the result at risk of being biased from selection on confounders 

that affect average achievement, or on moderators that affect achievement by way of their 

interactions with the treatment. Put another way, the RCT-based option uses an estimate of the 

true (unbiased) result, but it is from someplace other than the inference site; whereas the 

comparison-group based approach makes use of an estimate of the true outcome for the inference 

site itself; however, it is observed for just one condition (i.e., it is half of the unbiased solution 

for the inference location.)  

It is not a-priori clear that for these scenarios, where causal generalization of the average 

impact is being sought, the RCT-based result always yields a better (more accurate) 

generalization than the QE-based alternative. A related question is whether there are certain 

conditions under which the QE strategy is the better option. In this work we address the 

following questions: (1) What are the expressions for bias for the RCT- and QE-based 
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generalizations described above? (2) Under what conditions is net bias in one of these quantities 

lower than in the other? (3) In a single empirical application, what are estimated levels of each 

type of bias, prior to and after applying site-level covariate adjustments?    

 The question we raise here, which we explore in this work, reflects a different perspective 

on the relationship between internal and external validity. Rather than seeing internal validity as 

the sine qua non, it treats the two forms of validity as interdependent. There is precedent for this 

in the program evaluation literature. Shadish et al. (2002), although accepting that internal 

validity is the “sine qua non”, also stressed that it is inseparable from external validity.  They 

considered the latter as “the desideratum” (the purpose or objective) of educational research 

(Shadish, et al., p. 97). Thus, the two kind of validity –  internal and external – are deeply 

complementary (Shadish et al., 2002). Taking a stronger position, some evaluators outright 

rejected the precedence of one form of validity over the other, instead emphasizing contextual 

factors as co-causes of the results (e.g., Cronbach, 1975; Cronbach 1982; Scriven, 2008). 

Cronbach, for example, stressed the “limited reach” of internal validity. For him identification of 

“the cause” of an effect had limited value without understanding the conditions and scope of that 

effect. Put another way, Cronbach considered that “if observations are not generalizable, then 

causal validity is irrelevant” (Albright et al., 2000, p. 338).  According to this interpretation, 

what we observe as the marginal impact in an RCT-based evaluation, is the product of both the 

experimental manipulation plus the interactions of treatment with observed and unobserved 

moderators of the effect for that specific context. Any generalization requires making additional 

strong assumptions about the role and impact of those factors in the “generalized-to” context.  

In this work, we provide an additional perspective on the positioning of internal and 

external validity.  We show that under certain plausible conditions, quasi-experimental 
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comparisons can yield generalized inferences that are less-biased than RCT-based ones. We 

develop the idea that both the RCT- and QE-based inferences have potential for bias – either 

from confounders that affect average performance across sites, or from moderators that produce 

differential impacts across sites. Net bias depends on whether effects of confounders and 

moderators compound or offset one another. Therefore, when generalization is the concern, the 

role of factors affecting internal validity (e.g., confounders) and external validity (e.g., 

moderators of impact) must be considered simultaneously. We develop this idea formally in the 

next section2.     

Three Scenarios to Motivate the Main Ideas of this Work  

 
2 Four points require clarification before proceeding: 

1. The quantities considered in the following sections represent true values. Later, in the empirical section of 

this work we will address estimation with observed values that figure-in sampling error at different levels 

of analysis. 

2. Consistent with standard WSCs, the term “bias” is used to describe departures of values of parameters of 

interest from their true benchmark values. An alternative would be to consider these differences as between 

estimands for average impact, where a different estimand is associated with each site. The main ideas of 

this work do not depend on which of these interpretations we choose, and we follow the standard WSC 

usage. 

3. In this work RCTs and QEs both are considered “experiments”. The notation designates results from RCTs 

as “XP”, and from quasi-experiments as “QE”, where the QEs in this work are Non-Equivalent Comparison 

Group Designs (CGDs), in which comparisons are made between sites, and with bias potentially arising 

from differences between sites in the distribution of factors that affect average achievement or impact. (The 

convention and terminology reflects a preference for considering QEs as experimental, and it contrasts with 

the usage of these terms in other sources [e.g., Glazerman et al., 2003; and Imai et al., 2008, who 

differentiate “experimentalists” from “observationalists”.]) 

4. To help bring out the main idea, this work assumes a certain type of program participation among sites. 

First, in sites where an experiment of the program is conducted, all eligible subjects are randomly assigned 

to conditions, and there is compliance with assignment to conditions at those sites. Second, in sites where 

an experiment is not conducted, all eligible cases either receive the treatment, or none of them do. As a 

result, a non-experimental comparison between conditions involves a comparison between sites. Selection 

is of individuals into sites. The focus is on one selection mechanism – that of individuals into sites – as it 

affects average performance and impact, similar to certain established WSC designs (e.g., Bloom et al., 

2005 and Wilde & Hollister, 2007). Further, we assume no missing outcomes for individuals. (Future 

extensions of this work may integrate additional selection mechanisms that determine, for experimental 

sites, whether individuals choose to participate in the experiment or not, and for sites without an 

experiment, whether individuals select into the program or not within the site.) 
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Scenario 1:  Establishing the Experimental Benchmark 

The goal is to estimate the impact of a program 𝑇 relative to counterfactual 𝐶 on outcome 

𝑌 at a given site 𝑁. Express the true average impact quantity for this site as follows (XP stands 

for “experimental” to denote a quantity that would be estimated without bias through an 

uncompromised randomized experiment):     

∆𝑋𝑃|𝑁= 𝑌𝑁(𝑇) − 𝑌𝑁(𝐶)        (1) 

This work assumes that there is a true benchmark average impact quantity for each site. If 

it was possible to randomize individuals to 𝑇 or 𝐶 at an inference site, then the unconfounded 

assignment of individuals into conditions would allow the true value to be estimated without 

bias. For instance, if the site is a school, this quantity would be estimable if students and teachers 

were randomly assigned to conditions and if their outcomes were observed. The true value 

average impact is represented pictorially in Figure 1.   

The problem addressed in this work arises when information is missing about 

performance in one of the conditions at the inference site, 𝑁, which requires the use of 

information from elsewhere (i.e., from other sites) to generalize impact to the inference site. 

These cases are explored in the next two scenarios. 

------------------------- 

Insert Figure 1 here 

------------------------- 

 

Scenario 2: Inferring Average Impact at Site N When Treatment is Provided to Everyone at 

the Site.  

In Scenario 2 the goal is to infer average impact for site 𝑁, ∆𝑋𝑃|𝑁, in the situation where 

an experiment is not possible at the site because everyone is provided with the program.  This 

means average performance of individuals in the absence of treatment at the site is unknown.  
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This situation would arise if a program is being implemented school-wide. The 

administrator may want to know if the program achieves positive average impact on student 

outcomes, compared to if it had not been used.  

For this scenario, two options are considered to infer average impact at 𝑁.  

Option 1. The first option under Scenario 2 is to infer impact for 𝑁  using the result of a 

randomized experiment conducted at a different location 𝑀3. That is, the following impact 

quantity can be generalized from the source site 𝑀 to the inference site 𝑁:   

∆𝑋𝑃|𝑀= 𝑌𝑀(𝑇) − 𝑌𝑀(𝐶)        (2) 

  Figure 2 displays both average impact at the inference site 𝑁, ∆𝑋𝑃|𝑁, and the average 

impact from the comparison site 𝑀,  ∆𝑋𝑃|𝑀. For Scenario 2, it is assumed that performance in the 

absence of treatment is not observed at 𝑁 (represented by the empty horizontal bar), which 

prompts the use of the result from 𝑀.     

------------------------- 

Insert Figure 2 here 

------------------------- 

 

The difference between the true average impact at 𝑀, and the one at inference site 𝑁, is 

the bias in the former when used to generalize impact to the latter site. This is shown as 𝐵𝑖𝑎𝑠1 in 

Figure 2, and is expressed as follows:  

𝐵𝑖𝑎𝑠1 = ∆𝑋𝑃|𝑀 − ∆𝑋𝑃|𝑁           (3) 

 
3 A specific case of this scenario would happen if an administrator of a site where a program is being used wants to 

know if the program is working; that is s/he wants to draw an inference about whether the program is achieving a 

positive impact at his/her site. In the context of educational research in the U.S., s/he may look to a compendium of 

impact findings from randomized experiments of the program done in other settings, such as through the What 

Works Clearinghouse, to support a conclusion about whether the program is working at his/her site. 
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𝐵𝑖𝑎𝑠1 is represented in Figure 2 as the difference in the length of the vertical bars. 𝐵𝑖𝑎𝑠1 

is present if there is a difference between the sites in the average impact of treatment4.  

What are Possible Sources of 𝑩𝒊𝒂𝒔𝟏? 𝐵𝑖𝑎𝑠1 is attributable to factors that result in 

systematic differences in impact between sites (i.e., not counting random sampling error). 

Among possible sources, most commonly considered are “unit characteristics” – person 

attributes that moderate the program’s impact. That is, 𝐵𝑖𝑎𝑠1 will be present if there is 

imbalance between sites N and M in the distribution of characteristics of persons that interact 

with treatment (Jaciw, 2016a; Cole & Stuart, 2010). For example, if the program achieves greater 

impact for students with higher incoming achievement, and if inference site 𝑁 has a 

systematically lower proportion of students with higher incoming achievement than site 𝑀, then, 

unless this difference is adjusted for analytically, the average impact at 𝑀 will have positive bias 

if generalized to 𝑁. Random assignment of individuals to locales would eliminate this confound; 

however, such assignment rarely occurs in practice (Hotz, et al., 2005). A common strategy to 

limit 𝐵𝑖𝑎𝑠1 is to adjust for effects for imbalance on moderators through reweighting or 

subclassification methods (Tipton, 2013).  An assumption of these methods is that the adjustment 

strategies result in conditionally unconfounded selection into locations on variables that interact 

with treatment – a necessary condition to mitigate 𝐵𝑖𝑎𝑠1.     

Lack of 𝐵𝑖𝑎𝑠1 implies that the selection of individuals into locations across which 

outcomes are being compared are unconfounded (or is conditionally unconfounded) by factors 

moderating impact; however, the converse of this is not necessarily true. Macro effects (Hotz, et 

al., 2005) are another possible source of 𝐵𝑖𝑎𝑠1. These are site characteristics measured through 

 
4 In Figure 2, the short horizontal bars represent performance levels. The solid-filled black bars represent observable 

quantities. The white-filled horizontal end-bar (in this case representing average performance in the absence of 

treatment for 𝑁) represents a quantity that is not observed. 
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variables that have values specific to sites. For example, if 𝑁 and 𝑀 are different in terms of 

principal leadership style or school technological capacity, and if the impact of the treatment 

depends on (interact with) these variables, then they will induce 𝐵𝑖𝑎𝑠1 if ∆𝑋𝑃|𝑀 if used to infer 

impact at 𝑁. Macro variables may also be site-averages of unit characteristics measured at each 

site. If a site is a school, then this may include the school average of teachers’ years of 

experience, or the school average of student performance assessed before the study. When the 

comparison involves just two sites (in our case, 𝑁 and 𝑀) the effects of macro variables on 

outcomes cannot be analytically de-confounded from the effect of treatment. (With more than 

two sites, model-based adjustments may be used to try to limit imbalance on macro variables 

[Hotz et al., 2005]. Our empirical example will illustrate this idea further.)   

𝐵𝑖𝑎𝑠1 may be attributable to other sources also, including if the treatment itself varies 

across locations either in its offering (program practices) or uptake (participation in activities) 

(Bloom, et al., 2003), if fidelity of implementation is different (Hulleman et al., 2009), or if the 

control condition or programs vary across sites (Weiss, et al., 2014). An additional potential 

source of 𝐵𝑖𝑎𝑠1 is a difference between the sites either in the measures or the comparability of 

the scales used to assess outcomes.  

Option 2 The second option is to make a quasi-experimental (QE) comparison between 

𝑁, where we assume everyone is receiving treatment, and individuals at a different site 𝑀, where 

we assume the treatment is not implemented. The resulting difference quantity may be 

represented as follows:    

∆𝑄𝐸1= 𝑌𝑁(𝑇) − 𝑌𝑀(𝐶)         (4) 

Figure 3 displays both the benchmark impacts quantity at site N, ∆𝑋𝑃|𝑁, and the average 

impact using the QE comparison with site 𝑀, ∆𝑄𝐸1. As before, the short horizontal bars represent 
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performance levels. The solid-filled black bars represent observable quantities. The white-filled 

horizontal end-bar (in this case for average performance in the absence of treatment for 𝑁) 

represents a quantity that is not observed.  

------------------------- 

Insert Figure 3 here 

------------------------- 

 

The difference between the QE result, ∆𝑄𝐸1, which involves a comparison of outcomes 

from 𝑀, and the RCT-based benchmark impact at 𝑁, is the bias in the former quantity when used 

to infer impact to 𝑁. This is shown as 𝐵𝑖𝑎𝑠2 in Figure 3. It is expressed as follows:  

𝐵𝑖𝑎𝑠2 = ∆𝑄𝐸1 − ∆𝑋𝑃|𝑁 

= 𝑌𝑁(𝑇) − 𝑌𝑀(𝐶) − [𝑌𝑁(𝑇) − 𝑌𝑁(𝐶)] 

= 𝑌𝑁(𝐶) − 𝑌𝑀(𝐶)        (5)  

 𝐵𝑖𝑎𝑠2 is represented in Figure 3 as the difference between the inference site 𝑁 and the 

comparison site 𝑀 in the vertical heights corresponding to average performance in the absence of 

treatment. That is, 𝐵𝑖𝑎𝑠2 is present if there is a difference between the sites in their average 

performance without the program. This is the standard expressions for bias in a CGD-based 

difference quantity relative to an experimental benchmark for an inference site. (It is usually the 

starting point in WSC empirical studies that evaluate bias in impact estimates from CGD’s 

relative to empirical RCT-benchmarks, and in these studies treatment group performance 

typically is differenced away [Heckman et al., 1997; Weidmann & Miratrix, 2021]).   

What are Possible Sources of 𝑩𝒊𝒂𝒔𝟐? 𝐵𝑖𝑎𝑠2 can result from imbalance between the 

locations being compared on any factor that produces a difference in outcomes in the absence of 

treatment. As with 𝐵𝑖𝑎𝑠1, this includes “unit characteristics”, in this case person attributes that 

affect the outcome. They include student baseline achievement in impact evaluations in 
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education (Unlu et al., 2021), and individual prior earnings in impact evaluations of employment 

training programs (Glazerman et al., 2003). Such variables are important because they are highly 

predictive of later outcomes. Stated more formally, an important potential source of 𝐵𝑖𝑎𝑠2 in 

Scenario 2 is confounded assignment of persons to location (Hotz et al., 2005) on factors that 

affect performance in the absence of treatment. As is the case with 𝐵𝑖𝑎𝑠1, random assignment of 

individuals to locales would eliminate this confound; however, such assignment rarely occurs in 

practice (Hotz, et al., 2005). A common strategy to limit 𝐵𝑖𝑎𝑠2 is to adjust for effects of 

confounders, or a corresponding balancing score (Rosenbaum et al., 1983) to achieve 

conditionally unconfounded assignment to locations. It is notable that “unit characteristics” (the 

person attributes) that result in 𝐵𝑖𝑎𝑠1 may or may not be the same as those that produce 𝐵𝑖𝑎𝑠2.   

Lack of 𝐵𝑖𝑎𝑠2 implies that the selection of individuals into locations that are being 

compared is unconfounded (or is conditionally unconfounded) by factors affecting performance 

in the absence of treatment; however, the converse is not necessarily true. 𝐵𝑖𝑎𝑠2 may be present 

for reasons other than person-level selection. For example, outcomes may be affected by site-

level characteristics - the “macro variables” (Hotz, et al., 2005) discussed under Option 1. Such 

variables have values specific to sites. Using the example from the last section, if locales 𝑁 and 

𝑀 are different in terms of principal leadership style or school technological capacity, and if 

these variables have a bearing on the outcome, for example achievement, then they will induce 

𝐵𝑖𝑎𝑠2 in ∆𝑄𝐸1. As was discussed under Option 1, if the comparison involves just two sites (in 

our case, 𝑁 and 𝑀) the effects of macro variables on outcomes cannot be analytically de-

confounded from the effect of treatment. Additional possible sources of 𝐵𝑖𝑎𝑠2 is a difference 

between the “business as usual” (BAU) program being used at 𝑀 and one that would be used in 
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the absence of treatment at 𝑁,  and a difference between the sites either in the measures or the 

comparability of the scales used to assess outcomes 

Recap of Scenario 2. Scenario 2 assumes treatment is implemented across site 𝑁, and 

the goal is to infer average impact of the treatment for the site. The unbiased “benchmark” 

average impact for site 𝑁 is ∆𝑋𝑃|𝑁.   

Option 1 uses the uncompromised RCT-based impact quantity from site 𝑀, ∆𝑋𝑃|𝑀, to 

infer impact at 𝑁. The result, used to infer average impact for site 𝑁 is biased by the amount 

𝐵𝑖𝑎𝑠1 = ∆𝑋𝑃|𝑀 − ∆𝑋𝑃|𝑁. 

Option 2 makes use of a quasi-experimental comparison of average performance between 

the treated sample at inference site 𝑁, and average performance in the absence of treatment at the 

comparison site 𝑀: ∆𝑄𝐸1= 𝑌𝑁(𝑇) − 𝑌𝑀(𝐶).  The result, when used to infer average impact for 

site 𝑁 is biased by the amount 𝐵𝑖𝑎𝑠2 = 𝑌𝑁(𝐶) − 𝑌𝑀(𝐶). 

The Two Options in Scenario 2 Raise the Following Question: Given Scenario 2, if  

the goal is to achieve lower net bias, what is the better choice for inferring impact at 𝑁?  We 

explore this point empirically later.  

Scenario 3: Inferring Average Impact at Site N when the Treatment has Not Been 

Implemented at that Site  

This is like Scenario 2, except no one at the inference site,  𝑁, has received the treatment. 

Scenario 3 may seem to be more-obviously about generalization, in the sense that an externally 

valid causal inference is being sought for a population that has not yet received the program or 

been involved in an experiment of the program. We assume that a randomized experiment cannot 

be conducted at 𝑁 in the short term, and a plausible value for impact at 𝑁 is needed immediately 
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– perhaps to guide programming decisions in the present – and before a randomized experiment 

can happen.   

As with Scenario 2, we consider two options for estimating impact at 𝑁.  

Option 1. The first option is to use the experimental quantity from location 𝑀, as we did 

in Case 1 under Scenario 2. With this option, bias is the same as in Equation 3 above, reflecting 

the difference in impact between the two sites. 

Option 2. The second option is less obvious. It consists of a quasi-experimental 

comparison between treated individuals at a different site 𝑀, and untreated individuals 

(everyone) at the inference site 𝑁. The resulting quasi-experimental difference quantity is 

represented as follows:    

∆𝑄𝐸2= 𝑌𝑀(𝑇) − 𝑌𝑁(𝐶)         (6) 

This is the difference between the treated at comparison site 𝑀, and the non-treated 

(everyone) at the inference site 𝑁. 

Figure 4 displays both the quantity of interest, which is the average impact for the inference 

site 𝑁, ∆𝑋𝑃|𝑁, and the average impact based on a comparison of outcomes with site 𝑀, ∆𝑄𝐸2. As 

in the prior figures, the solid-filled horizontal black bars represent observed values, and the 

white-filled bar (in this case representing average performance under assignment to treatment at 

𝑁) represents a value that is not observed. The absence of this value prompts the comparison 

with the treated group at 𝑀.  

∆𝑄𝐸2 in this scenario is different from ∆𝑄𝐸1 in Scenario 2. In Scenario 2, we inferred the 

average counterfactual performance to 𝑇 at 𝑁  using outcomes in condition 𝐶 at 𝑀. Under 

Scenario 3, we infer average counterfactual performance to 𝐶 at 𝑁 using outcomes in condition 

𝑇 at 𝑀. The comparison is inverted between the two scenarios, reflecting the information that is 
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available or needed to infer the average causal effect for site 𝑁 . This is evident in Figures 3 and 

4: under Scenario 2 (Figure 3) the known and unknown quantities (the solid black bars and white 

bars) at 𝑁 are for the treated and untreated groups, respectively. Under Scenario 4, the coloring 

of the bars is reversed for the two groups at that site5.   

------------------------- 

Insert Figure 4 here 

------------------------- 

   

To formulate bias in  ∆𝑄𝐸2, first we expand the expression in Equation 6:  

∆𝑄𝐸2= 𝑌𝑀(𝑇) − 𝑌𝑁(𝐶) = [𝑌𝑀(𝑇) − 𝑌𝑀(𝐶)] + [𝑌𝑀(𝐶) − 𝑌𝑁(𝐶)]  (7) 

The difference between the QE result obtained through a comparison of outcomes at 𝑀, ∆𝑄𝐸2, 

and the experiment-based benchmark impact at 𝑁, ∆𝑋𝑃|𝑁 , is the bias in the former quantity when 

used to generalize impact at the inference site 𝑁. We express this as follows: 

∆𝑄𝐸2 − ∆𝑋𝑃|𝑁 

= {𝑌𝑀(𝑇) − 𝑌𝑀(𝐶) + [𝑌𝑀(𝐶) − 𝑌𝑁(𝐶)]} − {𝑌𝑁(𝑇) − 𝑌𝑁(𝐶)} 

= [𝑌𝑀(𝑇) − 𝑌𝑀(𝐶)] − [𝑌𝑁(𝑇) − 𝑌𝑁(𝐶)] +  [𝑌𝑀(𝐶) − 𝑌𝑁(𝐶)] 

= {[𝑌𝑀(𝑇) − 𝑌𝑀(𝐶)] − [𝑌𝑁(𝑇) − 𝑌𝑁(𝐶)]} −  [𝑌𝑁(𝐶) − 𝑌𝑀(𝐶)] 

= ∆𝑋𝑃|𝑀 − ∆𝑋𝑃|𝑁 − (𝑌𝑁(𝐶) − 𝑌𝑀(𝐶))     

= 𝐵𝑖𝑎𝑠1 − 𝐵𝑖𝑎𝑠2       (8) 

 
5 During a presentation of this work at a conference, one attendee pointed out that, in research, one would never start 

with an untreated group and look for a counterfactual among treated individuals. This may be true in research in 

which one seeks to understand impact for an established treated group. However, it is not routinely true in program 

evaluations where decision-makers, for instance administrators for individual sites, such as schools or districts, have 

a well-defined inference population that has not used the program (i.e., the students at the site), and want to draw an 

inference about how those students would have performed had the program been used. This information has value 

for such decision-makers, and getting the answer right is important before deciding whether or not to buy that 

program (as opposed to a potentially better alternative) and implement it for the students in their charge.  



18 
 

𝐵𝑖𝑎𝑠1 and 𝐵𝑖𝑎𝑠2 are represented in Figure 4. The figure is essentially a composite of 

Figures 2 and 3. The sources of bias are the same as before.  We see that ∆𝑄𝐸2 has two bias terms 

when used to infer impact at 𝑁: due to the difference between the sites in average achievement in 

the absence of treatment (𝐵𝑖𝑎𝑠2) and due to the difference between the sites in their impact 

(𝐵𝑖𝑎𝑠1). This implies that the difference quantity, ∆𝑄𝐸2, potentially reflects selection into sites 

both on factors affecting average achievement in the absence of treatment, and on factors that 

moderate impact.  

Recap of Scenario 3:  Scenario 3 assumes treatment is not implemented across site 𝑁, 

and the goal is to infer average impact of the treatment for the site. The unbiased “benchmark” 

average impact for site 𝑁 is ∆𝑋𝑃|𝑁. 

Option 1 uses the uncompromised RCT-based impact quantity from site 𝑀, ∆𝑋𝑃|𝑀, to 

infer impact at 𝑁. As with Scenario 2, the result is biased by the amount 𝐵𝑖𝑎𝑠1 = ∆𝑋𝑃|𝑀 −

∆𝑋𝑃|𝑁. 

Option 2 makes use of a quasi-experimental comparison of average performance between 

the treated sample at site 𝑀,  and average performance in the absence of treatment at the 

inference site 𝑁:, ∆𝑄𝐸2= 𝑌𝑀(𝑇) − 𝑌𝑁(𝐶). The result, used to infer average impact for site 𝑁 is 

biased by the amount 𝐵𝑖𝑎𝑠1 − 𝐵𝑖𝑎𝑠2  

The Two Options in Scenario 3 Raise the Following Question: For Scenario 3, what is 

the better choice for inferring impact at 𝑁 to achieve lower net bias:  the comparison group-

based result, ∆𝑄𝐸2, which is susceptible to both 𝐵𝑖𝑎𝑠1 and 𝐵𝑖𝑎𝑠2, or the experiment-based 

quantity ∆𝑋𝑃|𝑀, susceptible to 𝐵𝑖𝑎𝑠1 only? On an intuitive level, the second option seems 

preferable because it is potentially affected by only one form of bias. But is the second option 

always better?  
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We address this question in the next section.  We summarize the alternatives discussed 

above in Table 1. 

------------------------- 

Insert Table 1 here 

------------------------- 

 

Under Which Conditions should a Quasi-Experimental Generalization be Preferred to an 

Experiment-Based One? 

Scenarios 2 and 3 each explores two options for inferring impact at 𝑁, and the two 

scenarios suggest different rules for deciding the preferred alternative. 

Scenario 2 

When everyone at 𝑁 (the inference site) receives treatment, impact may be inferred using 

∆𝑋𝑃|𝑀 which is susceptible to 𝐵𝑖𝑎𝑠1, or  ∆𝑄𝐸1, which is susceptible to 𝐵𝑖𝑎𝑠2. The better choice 

is the one with a lower magnitude of bias (assuming we use the level of bias as the criterion for 

the better choice). Below we explore this question empirically by comparing the magnitudes of 

the estimates of each type of bias.  

Scenario 3  

When no one at 𝑁 (the inference site) has received treatment, impact may be inferred 

using ∆𝑋𝑃|𝑀, which is susceptible to 𝐵𝑖𝑎𝑠1, or ∆𝑄𝐸2, which is susceptible to both biases, 

specifically, net bias in the difference: 𝐵𝑖𝑎𝑠1 − 𝐵𝑖𝑎𝑠2. As with Scenario 2, we assume the better 

choice is the one with a lower magnitude of net bias. To evaluate this, we can compare |𝐵𝑖𝑎𝑠2| 

to |𝐵𝑖𝑎𝑠1 − 𝐵𝑖𝑎𝑠2|, or alternatively, we compare 𝐵𝑖𝑎𝑠22  to (𝐵𝑖𝑎𝑠1 − 𝐵𝑖𝑎𝑠2)2.  

Before exploring this question empirically below, we consider the two options 

numerically. Applying the criterion of lower net bias, we should prefer ∆𝑄𝐸2  when: 

(𝐵𝑖𝑎𝑠1 − 𝐵𝑖𝑎𝑠2)2 < 𝐵𝑖𝑎𝑠12        (9) 
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We can rewrite this as: 

(𝐵𝑖𝑎𝑠12 − 2𝐵𝑖𝑎𝑠1𝐵𝑖𝑎𝑠2 + 𝐵𝑖𝑎𝑠22) < 𝐵𝑖𝑎𝑠12     (10) 

Cancelling terms on both sides: 

(𝐵𝑖𝑎𝑠22 − 2𝐵𝑖𝑎𝑠1𝐵𝑖𝑎𝑠2) < 0       (11) 

For this to be true, 2𝐵𝑖𝑎𝑠1𝐵𝑖𝑎𝑠2 has to be positive, which implies the biases have the 

same sign, and (a) if both biases are positive,  𝐵𝑖𝑎𝑠1 > 1/2 𝐵𝑖𝑎𝑠2, or (b) if both biases are 

negative, 𝐵𝑖𝑎𝑠1 < 1/2 𝐵𝑖𝑎𝑠2.6  Before further discussing the alternatives, we should consider if 

satisfying these conditions is even plausible.  

First, can we expect the conditions in Equation 11 to be satisfied under certain plausible 

values for bias? Past empirical work shows that without adjustment for effects of covariates, 

𝐵𝑖𝑎𝑠2 can achieve levels of .20 standard deviations of the outcome variable (Unlu et al., 2021),  

and 𝐵𝑖𝑎𝑠1 can achieve similar levels (Jaciw et al., 2021; Orr et al., 2019). However, there is also 

variability in magnitudes of each type of bias, which suggests that the inequality in Equation 11 

is not unexpected (e.g., based on past empirical results one can imagine situations in which 

𝐵𝑖𝑎𝑠1 > 1/2 𝐵𝑖𝑎𝑠2 [when both biases are positive] or 𝐵𝑖𝑎𝑠1 < 1/2 𝐵𝑖𝑎𝑠2 [when both biases are 

negative]).  

Second, given the point made above, that ∆𝑄𝐸2 is preferable to ∆𝑋𝑃 when the two biases 

affecting the former quantity have the same sign, is this condition plausible in terms of 

experimental evaluation scenarios that arise in the real world? Presence of 𝐵𝑖𝑎𝑠2 implies a 

difference in average achievement between 𝑁 and 𝑀 in the absence of treatment.  Presence of 

 
6 This issue is considered further in Appendix A. The appendix includes a graphical display of the regions in the 

space of 𝐵𝑖𝑎𝑠1 and 𝐵𝑖𝑎𝑠2 in which ∆𝑄𝐸2 is preferable to ∆𝑋𝑃, given the criterion of lower net bias. A hypothetical 

possible shape of the joint distribution of 𝐵𝑖𝑎𝑠1 and 𝐵𝑖𝑎𝑠2 is overlaid. Various distributions are imaginable; 

however, true empirical distributions will depend on collecting datapoints of estimated bias across multiple studies 

including multisite trials of different program types.        
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𝐵𝑖𝑎𝑠1 implies average impact varies between 𝑁 and 𝑀. For the biases to have the same signs, 

the differences have to be in the same direction; that is, average performance in the absence of 

treatment must be lower, and impact higher, at the comparison site, 𝑀, relative to the inference 

site (see Scenario A in Figure B1 in Appendix B) or average performance in the absence of 

treatment must be higher, and impact lower, at the comparison site, 𝑀, relative to the inference 

site (see Scenario D in Figure B1 in Appendix B).  These situations are plausible under 

implementation of more-equitable programs that focus improvements for sites in which students 

on average perform on the lower end of the incoming achievement scale. With the use of such 

programs, it is reasonable to expect greater impacts for lower achieving students. Under these 

conditions, same-sign biases are necessary to achieve lower overall bias with ∆𝑄𝐸2 compared to 

∆𝑋𝑃|𝑀 when inferring impact at 𝑁7.           

Having established the condition under which ∆𝑄𝐸2 is preferable to ∆𝑋𝑃|𝑀 for assessing 

impact at 𝑁 through generalization of outcomes at 𝑀, and having shown that the level of each 

form of bias to support a preference for ∆𝑄𝐸2 is plausible both numerically, and can be imagined 

for real-life scenarios, we move to an empirical example.     

Method  

Setting up the Empirical Example 

We adopt standard Within Study Comparison (WSC) methods to empirically evaluate the 

levels of each type of bias. WSC studies have traditionally been used to evaluate bias in non-

experimental estimates against experimental benchmarks (pioneering studies are by Lalonde, 

[1986], and Fraker &Maynard, [1987]).  

 
7 The alternative scenarios B and C in Appendix B are situation in which impact is more positive at the site where 

students perform higher in the absence of treatment.    
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The starting point for a WSC study is typically the impact finding from an 

uncompromised randomized experiment. This result serves as an unbiased benchmark quantity. 

Control group outcomes are then substituted with those from a different comparison group. The 

difference in the estimated impact that results from this substitution reflects bias in the impact 

based on the quasi-experimental comparison (corresponding to 𝐵𝑖𝑎𝑠2 in the current study) as 

well as random sampling error. WSC studies include use of multisite trials in which controls at 

certain sites serve as the non-experimental comparison group for the inference site(s) (e.g., 

Bloom, et al., 2005; Wilde and Hollister, 2007). After bias is estimated, design and analysis 

strategies are then applied to see if they reduce bias. There are many examples of WSC studies 

(Wong, et al., [2018] cite 66, and there are more recent ones, such as by Unlu et al., [2021]).  

Recently, the method (or methods similar to WSC) has been extended to empirically 

assess discrepancies in generalized causal inferences from benchmark experimental impacts 

(Jaciw et al., 2021; Dehejia et al., 2021; Kern et al., 2016; Orr et al., 2019). The approach 

parallels the standard one described above – the benchmark impact estimate from an 

uncompromised RCT at a site is replaced by a generalized quantity based on RCT-based findings 

from one or more of the other sites. The difference between the generalized impact and the 

benchmark impact for the site reflects bias in the former quantity (corresponding to 𝐵𝑖𝑎𝑠1 in the 

current work). As with standard applications of WSC, design and analytic strategies are then 

evaluated in terms of their capacity to reduce bias.  

As noted above, in this work we use a “multisite variant” of the WSC method (Bloom, et 

al., 2005; Michalopoulos, et al., 2004; Wilde & Hollister, 2007). With this approach, each site in 

a multisite experiment has a benchmark true value that may be estimated without bias through an 

uncompromised RCT (i.e., each can play the role of inference site 𝑁), and controls at some or all 
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of the remaining sites serve as the comparison group that yields an alternative quasi-

experimental result (i.e., they play the role of 𝑀). Our empirical study is an application of WSC 

where we compare estimates of the alternative generalized impact quantities ∆𝑋𝑃|𝑀, ∆𝑄𝐸1, ∆𝑄𝐸2 

relative to the estimated benchmark impacts for each inference site, 𝑀, and evaluate estimated 

bias in each (𝐵𝑖𝑎𝑠1, 𝐵𝑖𝑎𝑠2, and 𝐵𝑖𝑎𝑠1 − 𝐵𝑖𝑎𝑠2, respectively.)  Below we discuss the steps in 

this application of WSC.  

In going forward with this application, it is important to keep in mind that each WSC 

study is just one of potentially many of the question. It takes multiple WSC studies to establish 

the empirical distributions of bias. That is, no single WSC study yields definitive results for 

understanding conditions for bias. As an empirical procedure (as opposed to a theoretical 

demonstration of an idea) it requires the accumulation of results from many studies before 

consistent rules for avoiding bias can be established through research summaries of the findings, 

such as by Bloom et al., (2005), Cook et al., (2008) or Glazerman et al., (2003) for traditional 

WSC studies. Therefore, the results from this study should be considered as providing one piece 

of the evidence for evaluating how discrepant RCT-based and  QE-based generalizations for 

individual sites are from the RCT benchmarks for those sites. Multiple similar studies can help to 

establish empirical generalities about this. (The current work should also be considered a proof 

of concept, because it is a novel application of WSC methods.8)  

Steps of the Method 

 
8 We emphasize that for sake of brevity, the current description of WSC studies does not address some of the more 

recent developments. Included among them is a Causal Replication Framework (Steiner et al., 2019) that 

comprehensively addresses the many reasons why QE-based estimates in WSC studies may fail to replicate RCT-

based benchmarks.  We addressed some of these earlier in discussion of possible sources of Bias1 and Bias2. 

Another development is work by Steiner and Wong (2018) for assess correspondence between quantities compared 

in replication efforts, including WSCs, using both difference and equivalence tests. Additionally, Orr et al., (2019) 

discuss approaches to helping policy-makers draw decisions from the results using a Bayesian decision theory 

framework (Bell, et al., 1995).  
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Before describing the three steps of the method, we make one modification. Up to this 

point, we have discussed assessing the accuracy of a generalized causal impact quantity that 

involves a comparison between just two sites, the inference (generalized to) site 𝑁, and the 

comparison (generalized from) site 𝑀. Going forward, instead of drawing comparisons with just 

one other site (𝑀) we do so with the average of outcomes across all other sites. This has four 

advantages: (1) it allows testing the accuracy of “large to small” generalized inferences – 

corresponding to the meaningful and policy-relevant question of whether findings assessed on a 

larger scale apply on the smaller scale (Jaciw et al., 2021; Orr et al., 2019; Shadish et al.,  2002), 

(2) with a larger sample, the effects of sampling error at the student and intermediate (teacher) 

levels are reduced in estimates of differences between sites in their average outcomes, (3) it 

allows discrepancies from benchmark site-specific impacts to be summarized in a convenient 

way, specifically, as variance expressions (a point we develop below), and (4) with multiple such 

comparisons, it is possible to evaluate the reduction in the average magnitude of bias conditional 

on the effects of site-level (macro) variables (i.e., through application of “model-based 

adjustments” noted by Hotz et al. [2005]). 

Step 1. Express 𝑩𝒊𝒂𝒔𝟏 and 𝑩𝒊𝒂𝒔𝟐 for a Given Site j. 

𝐵𝑖𝑎𝑠1 with respect to inference site 𝑆 = 𝑗  is impact averaged across all sites except j, 

∆̅𝑋𝑃|𝑆≠𝑗, minus impact at site j, ∆𝑋𝑃|𝐷=𝑗: 

𝐵𝑖𝑎𝑠1𝑗 = ∆̅𝑋𝑃|𝑆≠𝑗 − ∆𝑋𝑃|𝑆=𝑗           (12) 

𝐵𝑖𝑎𝑠2 with respect to in inference site j is the control performance at site  𝑆 = 𝑗, 

𝑌(𝐶)|𝑆=𝑗, minus the average of control performance across all sites except j, 𝑌̅(𝐶)|𝑆≠𝑗:  

𝐵𝑖𝑎𝑠2𝑗 = 𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗       (13) 

Step 2. Express Bias in ∆𝑿𝑷 ∆𝑸𝑬𝟏, and ∆𝑸𝑬𝟐 for each of N sites:  
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Site-specific biases in ∆𝑋𝑃 are as follows:   

𝐵𝑖𝑎𝑠1|𝑆=1 = (∆̅𝑋𝑃|𝑆≠1 − ∆𝑋𝑃|𝑆=1)          (14) 

𝐵𝑖𝑎𝑠1|𝑆=2 = (∆̅𝑋𝑃|𝑆≠2 − ∆𝑋𝑃|𝑆=2)         (15) 

 …    

𝐵𝑖𝑎𝑠1|𝑆=𝑁 = (∆̅𝑋𝑃|𝑆≠𝑁 − ∆𝑋𝑃|𝑆=𝑁)         (16) 

 

Site-specific biases in ∆𝑄𝐸1 are as follows:  

𝐵𝑖𝑎𝑠2|𝑆=1 = (𝑌(𝐶)|𝑆=1 − 𝑌̅(𝐶)|𝑆≠1)       (17) 

𝐵𝑖𝑎𝑠2|𝑆=2 = (𝑌(𝐶)|𝑆=2 − 𝑌̅(𝐶)|𝑆≠2)        (18)  

 …    

𝐵𝑖𝑎𝑠2|𝑆=𝑁 = (𝑌(𝐶)|𝑆=𝑁 − 𝑌̅(𝐶)|𝑆≠𝑁)        (19)  

Site-specific biases in ∆𝑄𝐸2 are as follows:   

𝐵𝑖𝑎𝑠1|𝑆=1 − 𝐵𝑖𝑎𝑠2|𝑆=1 = (∆̅𝑋𝑃|𝑆≠1 − ∆𝑋𝑃|𝑆=1) − (𝑌(𝐶)|𝑆=1 − 𝑌̅(𝐶)|𝑆≠1)    (20) 

𝐵𝑖𝑎𝑠1|𝑆=2 − 𝐵𝑖𝑎𝑠2|𝑆=2 = (∆̅𝑋𝑃|𝑆≠2 − ∆𝑋𝑃|𝑆=2) − (𝑌(𝐶)|𝑆=2 − 𝑌̅(𝐶)|𝑆≠2)   (21)  

 …    

 

𝐵𝑖𝑎𝑠1|𝑆=𝑁 − 𝐵𝑖𝑎𝑠2|𝑆=𝑁 = (∆̅𝑋𝑃|𝑆≠𝑁 − ∆|𝑆=𝑁) − (𝑌(𝐶)|𝑆=𝑁 − 𝑌̅(𝐶)|𝑆≠𝑁)   (22)  

 

Step 3. Summarize Bias for Each Alternative (∆𝑿𝑷, ∆𝑸𝑬𝟏 and ∆𝑸𝑬𝟐,) using Means of Squared 

Differences (i.e., Mean Squared Bias (MSB)).  

If overall bias was summarized by simply averaging over site-specific biases, then 

cancellation of positive and negative values would result in the underestimation of the average 

magnitude of bias (Bloom et al., 2005). Summarizing average levels of bias using the mean 

squared bias is one way to avoid this problem: 

For ∆𝑋𝑃:  

𝑀𝑆𝐵𝑋𝑃 =
1

𝑁
∑ (∆̅𝑋𝑃|𝑆≠𝑗−∆𝑋𝑃|𝑆=𝑗)2𝑁

𝑗=1       (23) 
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For ∆𝑄𝐸1:  

𝑀𝑆𝐵𝑄𝐸1 =
1

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)2𝑁

𝑗=1       (24) 

For ∆𝑄𝐸2: 

𝑀𝑆𝐵𝑄𝐸2 =
1

𝑁
∑ [(∆̅𝑋𝑃|𝑆≠𝑗−∆𝑋𝑃|𝑆=𝑗) − (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)]2𝑁

𝑗=1 ,                          

  =
1

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)

2𝑁
𝑗=1 +

1

𝑁
∑ (∆̅𝑋𝑃|𝑆≠𝑗−∆𝑋𝑃|𝑆=𝑗)

2𝑁
𝑗=1  

−
2

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)(∆̅𝑋𝑃|𝑆≠𝑗−∆𝑋𝑃|𝑆=𝑗)𝑁

𝑗=1     

 =
1

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)

2𝑁
𝑗=1 +

1

𝑁
∑ (∆𝑋𝑃|𝑆=𝑗 − ∆̅𝑋𝑃|𝑆≠𝑗)

2𝑁
𝑗=1  

+
2

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)(∆𝑋𝑃|𝑆=𝑗 − ∆̅𝑋𝑃|𝑆≠𝑗)𝑁

𝑗=1      (25)  

A point to emphasize here is that 𝑀𝑆𝐵 for ∆𝑋𝑃 (Equation 23) is an expression for the 

cross-site variance in impact. Similarly, 𝑀𝑆𝐵 for ∆𝑄𝐸1 (Equation 24) is an expression for the 

cross-site variance of average performance in the absence of treatment, and 𝑀𝑆𝐵 for ∆𝑄𝐸2 

(Equation 25), is the sum of these quantities plus twice the covariance between terms for −𝐵𝑖𝑎𝑠1 

and 𝐵𝑖𝑎𝑠2.  

These expressions allow us to address the main questions of this work, including about 

the degree of bias in comparison-group-based and RCT-based generalizations when compared to 

experimental benchmarks. We can expect that on average the magnitude of bias in ∆𝑄𝐸2 is less 

than the magnitude of bias in ∆𝑋𝑃, when the following condition is satisfied: 

𝑀𝑆𝐵𝑄𝐸2 < 𝑀𝑆𝐵𝑋𝑃 

⇔
1

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)2𝑁

𝑗=1 +
2

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)(∆𝑋𝑃|𝑆=𝑗 − ∆̅𝑋𝑃|𝑆≠𝑗)𝑁

𝑗=1 < 0      

           (26) 

This requires that each of the following conditions is met: 
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2

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)(∆𝑋𝑃|𝑆=𝑗 − ∆̅𝑋𝑃|𝑆≠𝑗)𝑁

𝑗=1 < 0    (27) 

|
2

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)(∆𝑋𝑃|𝑆=𝑗 − ∆̅𝑋𝑃|𝑆≠𝑗)𝑁

𝑗=1 | > |
1

𝑁
∑ (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗)

2𝑁
𝑗=1 | 

            (28) 

Equation 27 show the necessity of a negative covariance between site deviations in 

average achievement, and site deviation in impact, and therefore that 𝐵𝑖𝑎𝑠1 and 𝐵𝑖𝑎𝑠2 have the 

same sign, in expectation 9. (The conditions described here capture, on the aggregate, the criteria 

discussed earlier for the two-site case [i.e., the condition in Equations 9 – 11]).  

Step 4. Adjust for Effects of Confounders and Moderators.  

As with standard WSC studies, a salient question is whether quantities that summarize 

bias, in this case the values of 𝑀𝑆𝐵, are reduced in magnitude after conditioning on effects of 

covariates. More specifically, the question is whether adjusting for effects of covariates lowers 

(1) 𝑀𝑆𝐵𝑋𝑃 by reducing the influence of moderators of impact, (2) 𝑀𝑆𝐵𝑄𝐸1 by limiting the 

influence of confounders that affect average achievement, and (3) 𝑀𝑆𝐵𝑄𝐸2 by reducing the 

influence of either confounders or moderators. To do this, quantities in Equations 23 – 25 above 

will be estimated conditioning on a series of covariates, X: 𝑀𝑆𝐵𝑋𝑃|𝑿;  𝑀𝑆𝐵𝑄𝐸1|𝑿, and  𝑀𝑆𝐵𝑄𝐸2|𝑿. 

 For the empirical example below, estimates of 𝑀𝑆𝐵̂𝑋𝑃, 𝑀𝑆𝐵̂𝑄𝐸1, and  𝑀𝑆𝐵̂𝑄𝐸2 will be 

obtained prior to and after adjusting for effects of covariates. To allow a direct comparison of the 

results on the same scale that average program impacts are commonly reported (i.e., in the metric 

of the standardized effect size), estimates will be reported as the square root of these quantities 

divided by the pooled standard deviation of the outcome measure. 

Identifying Sources of Random Sampling Error 

 
9 The covariance is between 𝐵𝑖𝑎𝑠2|𝑆=𝑗 , (𝑌(𝐶)|𝑆=𝑗 − 𝑌̅(𝐶)|𝑆≠𝑗), and the negative of 𝐵𝑖𝑎𝑠1, −(∆̅|𝑆≠𝑗 − ∆|𝑆=𝑗) =

(∆|𝐷=𝑁−∆̅|𝐷≠𝑁). Therefore, a negative covariance implies that 𝐵𝑖𝑎𝑠1 and 𝐵𝑖𝑎𝑠2 have the same sign, in expectation.   
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Estimates of 𝑀𝑆𝐵 reflect sources of random sampling error. A secondary question of this 

work is whether, in the case of multisite designs with randomization of both students and 

teachers within sites, results are sensitive to modeling the intermediate teacher level. The 

question is whether statistically significant and substantively important differences in estimates 

of the 𝑀𝑆𝐵 terms result from ignoring this level. The generalizations discussed in this work are 

concerned with differences in impact across sites, and not with random class-level sampling error 

within sites; therefore, it is important to make sure that measurements of the former are not 

conflated with effects of the latter.    

Research Questions  

1. In the context of a multisite WSC design, what are the estimated average magnitudes of 

the discrepancies between site (benchmark) impacts and the three different version of 

generalized impact corresponding to ∆𝑋𝑃, ∆𝑄𝐸1 and ∆𝑄𝐸2, and are the estimated average 

magnitudes statistically significant? 

2. Are the estimates of the discrepancies in (1) different from each other?  

These questions will be addressed prior to and after covariate adjustments, and with and 

without adjusting for effects of class-level random sampling error. Given the focus of this work, 

the contrast of main interest is between the experiment-based results (e.g., 𝑀𝑆𝐵̂𝑋𝑃) and each of 

the comparison-group based results (𝑀𝑆𝐵̂𝑄𝐸1 and 𝑀𝑆𝐵̂𝑄𝐸2).      

Estimation 

Hierarchical Linear Models (HLM) (Raudenbush & Bryk, 2002) are used to produce 

maximum likelihood estimates of the following quantities: 𝑀𝑆𝐵̂𝑋𝑃, 𝑀𝑆𝐵̂𝑄𝐸1, 𝑀𝑆𝐵̂𝑄𝐸2, 𝑀𝑆𝐵̂𝑋𝑃|𝑿, 

𝑀𝑆𝐵̂𝑄𝐸1|𝑿  and 𝑀𝑆𝐵̂𝑄𝐸2|𝑿. Random Intercept Random Coefficient (RIRC) models are used in 

estimation (Jaciw et al, 2021; Miratrix et al., 2021). The precedent for using of HLM in WSC 
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applications is in Jaciw (2016b))10. (The full details of the models used are provided in Appendix 

C.)  

Data 

 The application uses data from the Tennessee STAR (Student-Teacher Achievement 

Ratio) class size reduction multisite trial. Results from the study are reported in Finn and 

Achilles, (1990), Mosteller, (1995), Nye, Hedges and Konstantopoulos, (1999), Nye, Hedges and 

Konstantopoulos, (2000), Nye, Hedges and Konstantopoulos, (2001) and Nye, Hedges and 

Konstantopoulos, (2002). The multisite trial started in 1985 and lasted 4 years. In the original 

study, 6,400 kindergarten students and their teachers were randomly assigned to (1) small classes 

 
10 HL models provide several advantages to summarizing discrepancies between the benchmark RCT-based impacts 

for individual sites and each of the three alternatives: XP, QE1 and QE2. First, the use of variances components 

from HLM allow us to summarize average absolute discrepancies between benchmark impacts for individual sites 

and generalized impacts that draw on outcomes from the remaining sites. In standard WSC methods it was 

recognized that summarizing biases through a straight average is misleading because positive and negative biases 

cancel, resulting in a mean close to zero; therefore, “average absolute biases” were used which consisted of taking 

the mean of absolute values of bias. Root Mean Squared biases (RMSB) are equally adequate for this purpose (with 

precedent in Bloom (2005), through conceptualization of bias in WSC studies as a form of random error labelled 

“non-experimental mismatch error”, and in more recent applications such as by Kern et al (2016), for example). In 

the WSC application of the current work, the bias for each site is the difference between the RCT-based impact for 

each site and an RCT or QE-based impacts that uses information from across all sites. As shown in Equations 23-25 

the MSBs in this application conveniently take the form of expressions for variances and covariances. HLM 

provides direct estimation of these quantities, including of the covariance term that is important for understanding 

the conditions under which QE2 should be preferred to XP. A second advantage to using the HL framework, it that it 

allows efficiently parsing-out potential sources of sampling error that it would be a mistake to ignore. In this work, 

we specifically net-out teacher-level sampling error through inclusion of a random effect at the intermediate 

(teacher) level. This would be much harder to do outside of HLM on a site-by-site basis. Third, a reason to 

summarize bias over multiple sites simultaneously is that it allows examining the role of site-level (macro) variables, 

both as confounders that influence average achievement across sites (and thereby lead to 𝐵𝑖𝑎𝑠2) and as moderators 

of impact that lead to effect heterogeneity (and thereby lead to 𝐵𝑖𝑎𝑠1). The role of macro variables may be tested by 

including them as main effects, and as variables that are interacted with treatment in the HL models, and examining 

the changes in RMSB that are measured in terms of the variance components. Finally, the use of variance 

components for summarizing bias my be more-easily appreciated if we think of variance components in a way that 

is different from how we usually think about them. A variance is usually conceived of as a measure of how distant 

individual observations are from a true average, and how erroneous the individual observations are – think of 

measurement error around the “true score” value in classical measurement theory. We recommend an alternative 

orientation to and interpretation of variance components in the context of this work. Instead of thinking of the 

deviations as degrees of distance and error of individual observations relative to the average, we can think of the 

average as a deviated value from the true (benchmark) impacts for individual sites. That is, in this work we pay 

attention to how wrong the average impact is, in expectation, as an alternative generalized quantity for individual 

sites, when compared to RCT-based experimental benchmark values for sites. The variance quantities in this sense 

suitably summarize wrongness of the average, instead of wrongness from the average.    
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(13–17 students), (2) regular classes (22–25 students), or (3) regular classes with an aide within 

each of 79 schools (sites). Approximately 100 classes were allotted to each arm of the trial. The 

intervention continued through third grade. Teachers were randomly assigned to conditions 

within grades as the student cohort moved from kindergarten through third grade. The design 

aimed to retain students in the condition to which they were originally assigned over that period. 

Students who joined the study in intervening years were randomly assigned to conditions. In 

previous studies, regular classes, with or without an aide, are considered the control group, and 

we adopt this approach. Having multiple control classes per school, allows estimation of 

sampling error for intermediate (class) units, which helps to address the question of the effect of 

ignoring the teacher level in estimates of MSB11.  

In the original study, outcomes were assessed on reading and math in kindergarten 

through third grade using the SAT-7 assessment. For the demonstration of this work, impacts are 

evaluated on second grade reading outcomes. The sample consists of students with posttests, 

who joined the study either in kindergarten or in first grade, and who remained in their assigned 

condition through second grade. To maintain a hierarchically structured dataset (i.e., with 

students nested in schools) analysis is limited to students who remained in the same school 

through second grade. Applying these criteria, the final dataset consists of 3,452 students among 

314 second grade classrooms, among 73 schools12.  

 
11 Results from past studies include the following: by the end of the second year, students in small classes had an 

advantage of more than .20 standard deviations in achievement over students in regular-sized classes (Finn & 

Achilles, 1990; Nye, Hedges & Konstantopoulos, 2000); impacts were cumulative, increasing from kindergarten 

through third grade (Nye, Hedges & Konstantopoulos, 2001); small class sizes did not have above-average impact 

for low performing students (Nye, Hedges & Konstantopoulos, 2002); impacts persisted at least five years after re-

entry into regular-sized classes (Nye, Hedges & Konstantopoulos, 1999). 

 
12 Student attrition in this study is notable (Nye, Hedges & Konstantopoulos, 2000). The reader is referred to prior 

work by Nye, Hedges and Konstantopoulos, (2000) who examined potential for bias from attrition. They examined 

differences between stayers and leavers in terms of impacts of small classes in prior grades. They conclude: “it 

seems implausible that attrition substantially biased the treatment effects in the following year” (p. 131). This gives 
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We examine results (a) prior to covariate adjustments; (b) after adjusting for effects of 

student-level school-centered variables (gender, eligibility for Free or Reduced Price Lunch, 

minority [non-White] status, years of experience teaching by the student’s teacher, whether a 

student’s teacher holds a Master’s degree or higher, and end-of-kindergarten scores in math and 

reading, and the interactions of these covariates with treatment); and (c) and after adjusting for 

the effects of both the variables in (b) and site-level macro variables, including site averages of 

uncentered student-level variables, and school urbanicity (i.e., whether a school is inner-city, 

suburban, rural or urban) and their interactions with treatment.13   

Results 

The main results are displayed in Table 2 and Figures 5a and 5b.   Each triplet of bars 

shows, from left-to right: √𝑀𝑆𝐵𝑋𝑃
̂

 (light gray), √𝑀𝑆𝐵𝑄𝐸2
̂  (dark gray), and √𝑀𝑆𝐵𝑄𝐸1

̂  (black), 

expressed in units of the standard deviation of the outcome variable. (Estimates of corresponding 

variance components are shown in Table E1 in Appendix E14.) 

------------------------ 

Insert Table 2 here 

------------------------ 

 

------------------------ 

Insert Figure 5a here 

------------------------ 

 

 

 
assurance that results from the current study, which use samples that are similar to those in the prior works noted 

above, are not substantively biased by attrition.  

13 All variables used as moderators were assessed at the start of the trial with the exception of post-kindergarten 

achievement. Baseline performance was not assessed in kindergarten. Therefore, based on precedent (Nye, Hedges 

& Konstantopoulos, 2002), as an exploratory strategy, the earliest achievement results available that are not likely to 

be affected by treatment are used (i.e., school averages of achievement at the end of kindergarten for controls only.)  

 
14 The expressions that we developed for Mean Squared Bias (Equations 23 – 25) involve removing the inference 

site from each average against which it is compared (this “one out” approach was first discussed in Author (2016a)). 

It’s inclusion, however, has minimal effect on the overall result. (This is demonstrated in Appendix D); therefore, 

the one-out approach is not used in estimation.         
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------------------------ 

Insert Figure 5b here 

------------------------ 

         

What Is Observed?  

How Large on Average are the Discrepancies of Generalized Quantities from Experimental 

Benchmarks? 

Estimates of XP. Before adjusting for class-level random sampling error, the estimates of 

𝑅𝑀𝑆𝐵 for the experiment-based generalization, in the metric of the standardized effect size are 

.31, .31 and .29, without covariate adjustment, with adjustment for student-level site-centered 

covariates, and additionally with adjustment for school-level covariates, respectively. After 

adjusting for class-level random sampling error, the corresponding quantities are .18, .17 and .14. 

All estimates are statistically significant before adjusting for the class-level random sampling 

error (at level α=.05), but none are after this adjustment.   

Estimates of QE2. The estimates of 𝑅𝑀𝑆𝐵 for the comparison group-based 

generalization that involves substituting outcomes for cases assigned to treatment are .46, .47 

and .34 in the metric of the standardized effect size, before controlling for the class level random 

sampling error, and .40, .42 and .27, after. (They are reported in the same order as for XP above.) 

All estimates are statistically significant (at level α=.05) with the exception of the model that 

adjusts for class-level sampling error and includes all covariates.   

Estimates of QE1. The estimates of 𝑅𝑀𝑆𝐵 for the comparison group-based 

generalization that involves substituting outcomes for cases assigned to control, in the metric of 

the standardized effect size and reported in the same order as for XP above, are .45, .44 and .25, 

before controlling for the class level random sampling error, and .43, .42 and .19, after. All 

estimates are statistically significant (at level α=.05).  
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How Different are the Generalized Quantities from Each Other?  

We also tested whether the generalized estimates are different from each other given that 

it is preferable to examine the statistical significance of the difference between quantities being 

compared, than the difference between them in whether they reached statistical significance 

(Gelman, 2006). 

Comparing Estimates of XP and QE2. Two main trends are evident. First, adjusting for 

the class-level random effect marginally increases the difference in 𝑀𝑆𝐵, favoring the 

experiment-based solution. This reflects that modeling the intermediate (class) level decreases 

√𝑀𝑆𝐵𝑋𝑃
̂

 proportionately more than √𝑀𝑆𝐵𝑄𝐸2
̂ . That is, the experiment-based generalization 

benefits more from properly accounting for sampling error at the intermediate level.   

Second, adjusting for the effects of school-level covariates reduces the discrepancy in 

outcomes between the two generalization approaches. After adjustment, the difference in 𝑀𝑆𝐵 

quantities is not statistically significant. 

Comparing Estimates of XP and QE1. The first main trend described above is less 

obvious in this case. The second persists – adjusting for the effects of school-level covariates 

leads to a small and non-statistically significant differences between methods of generalization, 

as indexed by the difference between them in MSB.     

Comparing QE1 and QE2. The differences between the estimates never reach statistical 

significance.  

What are the Main Take-Aways from the Results?  

There are three main take-aways. First, in almost all instances examined, the experiment-

based generalization (XP) shows a smaller magnitude of bias than the generalization involving a 

non-experimental comparison (QE). Second, after adjusting for effect of school-level covariates, 
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the advantage of XP over QE ceases to reach statistical significance.  Third, adjusting for the 

class-level random effect leads to a statistically significant reduction in the site-level variance 

components based on the change in the deviance statistic (the results are shown in Appendix E), 

with implications for generalizability. Notably, the experiment-based generalization is the most 

sensitive to adjustment for class-level effects, with 𝑀𝑆𝐵 being close to halved, which is more-

favorable to the experiment-based alternative.   

Some Conclusion about the Results  

The Need for Additional WSC Studies of this Type.   

Replication is needed. Knowledge from WSC studies about conditions for bias is 

cumulative, and requires replication. As noted earlier, Wong et al. (2018) cite 66 WSC studies 

that have led to more-general understanding about conditions for 𝐵𝑖𝑎𝑠2. These efforts have led 

to overarching strategies in the design and analysis of quasi-experiments to reduce selection bias 

that corresponds to 𝐵𝑖𝑎𝑠2 in this work. The current work extends use of WSCs to address 

problems of bias in causal generalization. The study should be considered as an N of 1 of 

potentially many studies of similar questions that over time will lead to more global rules about 

conditions for bias. More specifically, given the importance of cumulative knowledge about 

conditions for bias from multiple WSC studies, the results from the single STAR data set 

explored in this work should not be considered as definitive.  For example, adjusting for pretest 

often performs quite well in reducing 𝐵𝑖𝑎𝑠2, including the finding from recent works that 

adjusting for the pretest allows near replication of experimental benchmarks (Unlu et al., 2021). 

In this sense, the current work may be an exception.  

This study alerts us to certain things. Replication of this work is needed; however, as 

an early study comparing experiment- and comparison-group based approaches to 
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generalizability, the results of this work provoke an important question for subsequent 

replication efforts: Is it the case that, normally, differences between experiment-based and 

comparison-group-based generalizations are diminished, after adjusting for macro effects, and 

are resulting differences small enough to not matter? If so, then the implications are significant. 

If comparison group-based generalizations are as reliable as experiment-based ones, at least 

under specific conditions, then we can use both designs in more-targeted applications, potentially 

yielding more abundant evidence form evaluations of program effectiveness. A specific question 

to focus on in subsequent studies, based on what the derivations of this work predict, is whether 

usually the QE2 alternative comes closer than XP to experimental benchmarks, specifically for 

programs that achieve greater positive impacts for persons who perform lower on pre-

intervention measures of the outcome variable.    

Conventional WSC studies at providing direction for future work. Continuing work 

may focus on some of the standard questions typically addressed with traditional WSC studies, 

including about the benefits of local matching, the effects of adjusting for standard demographic 

variables as opposed to productive and theory-driven covariates (Shadish, et al. 2006) the role of 

different types of adjustments, including matching on propensity scores (Heckman et al., 1997; 

Rosenbaum et al., 1983). Recent work has also evaluated different metrics for capturing 

correspondence between  QE and XP results (Steiner et al., 2018), and focused on quantification 

of discrepancies from benchmarks in terms of policy-relevant metrics (Kruger, 1999; Kruger, 

2000; Orr et al., 2019; Wilde & Hollister, 2007). These extensions may be adapted to the 

problems studied in this work, and we earmark them for the future. It is also important to 

understand the role of other factors limiting replication in efforts to generalize (see Steiner et al., 

2019), because a search for effective moderators to account for impact heterogeneity may be 
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fruitless if the variation is attributable to other sources.  Separately from WSC studies, the 

current work also may be developed further through application of a framework for separating 

estimation error into components due to sample selection and treatment imbalance (Imai et al., 

2008), especially in situations where we assume the components are not additive, and in the 

context of generalization from large-to-small as we have been considering in this work.    

Possible Threats to the Validity of Estimates in this Study.  

 

Sampling Error. Estimates of 𝑀𝑆𝐵 used to index generalizability reflect between-school 

differences in average performance and impact, as well as random sampling error attributable to 

classes within schools, and to students within classes. An important result from this study is that 

estimates of 𝑀𝑆𝐵𝑋𝑃, 𝑀𝑆𝐵𝑄𝐸1 and 𝑀𝑆𝐵𝑄𝐸2 are sensitive to the inclusion of class-level random 

sampling error. Ignoring the variance attributable to class-level differences within schools leads 

to its absorption at the school level, resulting in upward-bias in variance at that level. This is 

important because estimates of variances at the school-level, both in average achievement and 

impact, are used to measure the proximity of generalizations to benchmark values. Ignoring 

class-level sampling variation biases these results. This effect may be more apparent if there are 

few classes per school, as was the case in the STAR experiment.     

In the STAR experiment, both students and teachers were randomly assigned to 

conditions, making the inclusion of the class random effect sensible; however, with multisite 

trials, modeling the intermediate level may be important even under different randomization 

schemes. For instance, if students are randomly assigned to conditions, but teachers are not, then 

bias may result from teachers’ selecting into conditions (e.g., certain teachers may jockey for the 

position to teacher students assigned to treatment). Even if randomization is blocked on classes, 

with students balanced across conditions within classes, if characteristics of classes and teachers 
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interact with treatment this will be reflected in heterogeneity in impact among classes within 

sites. Unless these within-school effects are modeled explicitly, they may be misinterpreted as 

reflecting variability across schools.   

Additionally, we can consider the stability of the results assuming a hypothetical re-

sampling from an imaginary “super universe” of schools (of which the study sample is one 

realization). The standard errors of estimates of the school-level variance components (and of 

𝑀𝑆𝐵𝑋𝑃, 𝑀𝑆𝐵𝑄𝐸1 and 𝑀𝑆𝐵𝑄𝐸2), reflect uncertainty in this scenario, assuming a theoretical 

sampling distribution. Ultimately, the current study with its results may be seen as one from 

among many potential study replications, where each study is a replicate from the “super 

universe” of studies. This calls for conducting actual replications to assess if the main results of 

this study represent the norm or are an aberration.    

Potential for Bias from Overfitting.  A possible concern is that the covariate 

adjustments at the site level induce bias from overspecification, which would raise doubt about 

the effects of those adjustments. To address this possibility, results were examined from 22 

models that included specific subsets of main effects of school-level covariates and their 

interactions with treatment. The first set of models adjusted for class-level random sampling 

error. The second set excluded the class-level effects. This yielded 44 results.  

Results showed that the relative changes in estimates in school-level variance 

components were very similar when adding the same sets of school-level covariates to less- or 

more-parameterized models. That is, inclusion of specific sets of school-level covariates 

produced similar relative changes in estimated variance components regardless of how many 

school-level covariates were already in the model. If the models were overfitted, one would 

expect instead that changes in estimates of variance components from inclusion of additional 
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school-level covariates to depend greatly on how saturated the model already is. The details of 

these tests are provided in Supplement A. 

Discussion 

This work applied a WSC approach to evaluate the accuracy of experiment-based and 

comparison-group-based causal generalizations to individual sites. It was posited at the outset 

that the former type of generalization should not be automatically accepted as less-biased just 

because it stems from an experiment conducted elsewhere – each approach can yield biased 

estimates. Experiment-based solutions (∆𝑋𝑃|𝑀) are susceptible to bias from imbalance on 

moderators of impact, whereas comparison group-based solutions (∆𝑄𝐸1, ∆𝑄𝐸2) can be biased 

from imbalance on confounders that affect average achievement, on moderators of impact, or on 

both types of variables. Susceptibility to both forms of bias does not mean greater net bias, 

because the two types of bias may cancel-out each other15. The idea was tested empirically, and 

in the case of a single multisite trial it was found that experiment-based results, for the most part, 

were less biased than comparison-group based approaches; however, after adjusting for effects of 

site-level covariates, the difference between them in the average magnitude of bias was not 

statistically significant.  Further study of the questions addressed in this work, and replication of 

results is recommended, possibly with focus on conditions that in this work were posited in 

theory to produce lower net bias in ∆𝑄𝐸2 – in cases where impacts are being evaluated for 

programs that are expected to achieve more-positive impacts for persons who perform lower on 

the pre-intervention measure of the outcome variable.  

 
15 An attendee at a conference where this work was presented was concerned with the idea that bias from ∆𝑄𝐸2 could 

be less than for ∆𝑋𝑃|𝑀. S/he summarized this intuition by saying that “two wrongs don’t make a right”. However, we 

have shown that because the biases may offset each other, sometimes “two wrongs” when represented in relation to 

each other, may be closer to the benchmark solution.   
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Relatedly, it is important to evaluate situations in which adjustment for certain covariates 

reduces both forms of bias, versus just one but not the other. At least intuitively, it seems that it 

would be harder to find covariates that routinely reduce 𝐵𝑖𝑎𝑠2 regardless of the program (in the 

sense that a pretest does for 𝐵𝑖𝑎𝑠1). This is because moderators of impact are treatment-specific 

and therefore depend on the joint working of the program and the moderator by way of their 

interaction.    

An important idea of this work is that when causal generalization is the goal, bias from 

confounded selection on factors that affect average achievement in the absence of treatment 

(factors resulting in 𝐵𝑖𝑎𝑠2), cannot be considered separately from bias due to confounded 

selection on factors that affect achievement by way of their interactions with treatment (i.e., 

moderators leading to 𝐵𝑖𝑎𝑠1). As noted earlier, traditional WSC studies are almost exclusively 

concerned with 𝐵𝑖𝑎𝑠2. Calculation of this bias “differences away” performance in the treatment 

condition (Bloom et al., 2005; Weidmann & Miratrix, 2020). Consequently, in standard 

applications of WSC studies, the role of treatment is immaterial to the discussion of bias. In my 

view, this misses half the problem, one that is unavoidable when causal generalization is the 

goal.          

At the start of this work, it was noted that the theoretical results of this work have 

implications for how we view the relationship between internal and external validity. This topic 

deserves a longer discussion, one that is beyond the scope of this work; therefore, we just briefly 

elaborate on the idea, with the hope that it generates further discussion.  

Causal generalization requires taking into account at least imbalance on moderators 

(sources of 𝐵𝑖𝑎𝑠1 if the generalized inference is based on ∆𝑋𝑃|𝑀) and possibly, additionally, 

imbalance on factors affecting average achievement absent treatment (i.e., 𝐵𝑖𝑎𝑠1 – 𝐵𝑖𝑎𝑠2, if the 
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generalized inference is based on ∆𝑄𝐸2). The implication is that, to establish the external validity 

of a causal inference, one does not first demonstrate internal validity through ruling out 𝐵𝑖𝑎𝑠2 

(the usual concern of standard WSC studies) and then proceed to establish external validity by 

ruling out 𝐵𝑖𝑎𝑠1. Establishing the external validity of a causal inference requires ruling out 

either 𝐵𝑖𝑎𝑠1 alone (in the case where the generalization is from an experiment conducted 

elsewhere), or 𝐵𝑖𝑎𝑠1 and 𝐵𝑖𝑎𝑠2 simultaneously (in the case of a QE2). Ruling out just 𝐵𝑖𝑎𝑠2 is 

trivial to establishing external validity16.    

Based on this, our interpretation of the assertion that internal validity comes first (i.e., is 

the “sine qua non” [without which there is nothing]), is that it applies only in the circumscribed 

case where, by design, external validity is not in question. Internal validity comes first in the 

same sense that one places first in a race by being the only competitor – you cannot lose! (But 

are you really winning? And can you even call it a competition?) 

  

 

  

 
16 When is 𝐵𝑖𝑎𝑠2 the sole concern? I would argue it is so only when the study sample is the inference sample, and 

when external validity is not at issue. For example, 𝐵𝑖𝑎𝑠2 is the primary concern of standard WSC studies that 

measure bias that compromises internal validity in CGDs when the causal inference concerns the study sample. 

Internal validity, and its potential to be compromised through 𝐵𝑖𝑎𝑠2, are insufficient for addressing problems of 

external validity. 
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Appendix A: Additional Theoretical Considerations Under 

 

Which we can Expect 𝑩𝒊𝒂𝒔𝟐 to Exceed 𝑩𝒊𝒂𝒔𝟏 

 

We explore graphically the conditions under which the impact based on a comparison of 

outcomes between the remote and inference sites (∆𝑄𝐸2) is less biased than the experiment-based 

result from the remote sites (∆𝑁𝑋|𝑀). This condition is satisfied when the following relation holds 

(repeating Equation 10). 

Using the criterion of lower net bias, we should prefer ∆𝑄𝐸2 to ∆𝑋𝑃|𝑀 when: 

(𝐵𝑖𝑎𝑠12 − 2𝐵𝑖𝑎𝑠1𝐵𝑖𝑎𝑠2 + 𝐵𝑖𝑎𝑠22) < 𝐵𝑖𝑎𝑠12     

 ⇔ (𝐵𝑖𝑎𝑠2)2 − 2𝐵𝑖𝑎𝑠2𝐵𝑖𝑎𝑠1 < 0 

⇔ (𝑌𝑁(𝐶) − 𝑌𝑀(𝐶))2 − 2(𝑌𝑁(𝐶) − 𝑌𝑀(𝐶))(∆𝑋𝑃|𝑀 − ∆𝑋𝑃|𝑁)    (A1) 

 We represent the terms for bias on a standard coordinate system: 

 (𝐵𝑖𝑎𝑠2 = 𝑥, 𝐵𝑖𝑎𝑠1 = 𝑦)  

Net bias for ∆𝑄𝐸2 is less than for ∆𝑋𝑃|𝑀 under the following condition: 

𝑥2 − 2𝑥𝑦 < 0 

⇔ 𝑥2 < 2𝑥𝑦          (A2) 

When 𝑥 > 0 this inequality is satisfied when the following condition is met:  

𝑥/2 < 𝑦          (A3) 

When 𝑥 < 0 this inequality is satisfied when the following condition is met: 

𝑥/2 > 𝑦          (A4) 

We observe that ∆𝑄𝐸2 is less than for ∆𝑋𝑃|𝑀 in the regions indicated by the arrows in 

Figure A4. The proportion of occasions on which this condition is satisfied depends on the 

distribution of the two biases across multiple studies. Assuming no correlation, with the 

distribution of biases being roughly circular (schematically shown as the dashed circle centered 
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on the axes), on average ∆𝑋𝑃|𝑀 would be preferred (more of the area of the circle is in the white 

region than the gray region). Given a positive correlation, with an ellipse (instead of the circle) 

tilted to the upper right, we may expect a more even preference for ∆𝑁𝑋2 or ∆𝑋𝑃.      

  

Figure A1. Mapping the space over which ∆𝑄𝐸2 has less net bias than ∆𝑋𝑃|𝑀. 
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Figure B1. Four Prototypical Scenarios Involving 𝐵𝑖𝑎𝑠1 and 𝐵𝑖𝑎𝑠2  
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Appendix C: HL Models Used in Estimation 

 

 

The Base Model 

The HL model reflects the study design, including the unit of random assignment and 

sources of random sampling error:  

The student-level (level-1) model is as follows:  

𝑦𝑖𝑗𝑘 = 𝛼0𝑗𝑘 + 𝛼1𝑗𝑘𝑇𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘      (C1) 

𝑦𝑖𝑗𝑘 is the achievement of student i in class j, in school k. Student random assignment to 

conditions is indicated by 𝑇𝑖𝑗𝑘 (with value 1 for treatment, and 0 for control). The term 𝜀𝑖𝑗𝑘 is the 

random deviation in student performance from the class mean (i.e., the source of student-level 

random sampling error).  

The class-level (level-2) model is as follows:  

𝛼0𝑗𝑘 = 𝛽00𝑘 + 𝑒0𝑗𝑘        (C2) 

𝛼1𝑗𝑘 = 𝛽10𝑘         (C3) 

The term 𝑒0𝑗 is the random deviation in class performance from the school mean (i.e., the 

source of class-level random sampling error). 

The school-level (level-3) model is as follows:   

𝛽00𝑘 = 𝛾000 + 𝑟0𝑘        (C4) 

𝛽10𝑘 = 𝛾100 + 𝑟1𝑘        (C5) 

 The term 𝑟0𝑗 is the random deviation in school average achievement from the grand mean 

of achievement, and 𝑟1𝑘 is the random deviation in school average impact from the grand mean 

of the impact. 

We can also summarize the model using a single mixed model formulation:  
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𝑦𝑖𝑗𝑘 = 𝛾000 + 𝛾100𝑇𝑖𝑗𝑘 + [𝑟0𝑘 + 𝑟1𝑘𝑇𝑖𝑗𝑘 + 𝑒0𝑗𝑘 + 𝜀𝑖𝑗𝑘]   (C6) 

We assume the following distributions of the random effects: 

𝑟0𝑘~𝑁(0, 𝜏0)         (C7) 

𝑟1𝑘~𝑁(0, 𝜏1)         (C8)  

𝑒0𝑗𝑘~𝑁(0, 𝜈)         (C9) 

𝜀𝑖𝑗𝑘~𝑁(0, 𝜎2)         (C10) 

(

𝑟0𝑘

𝑟1𝑘

𝑒0𝑗𝑘

𝜀𝑖𝑗𝑘

) ~𝑁 (

0
0
0
0

) , (

𝜏0 𝜏01 0 0
𝜏01 𝜏1 0 0
0 0  𝜈 0
0 0 0 𝜎2

)     (C11) 

Reflecting the point that Mean Squared Biases are variances of site-level averages of 

performance and of impact, and the covariance between site-level averages and impact,  

corresponding to quantities in equations 23 – 25, the variance and covariance components 

estimated at the site-level in the HL models are used to summarize each form of Mean Squared 

Bias:   

𝑀𝑆𝐵̂𝑁𝑋(𝑎) = 𝜏0̂,         (C12) 

𝑀𝑆𝐵̂𝑁𝑋(𝑏) = 𝜏0̂ + 𝜏1̂ + 2𝜏01̂       (C13) 

𝑀𝑆𝐵̂𝑋𝑃|𝐷=1) = 𝜏1̂,         (C14) 

In addition to the base model described above, results from two additional types of models 

were examined:  

1. With site-centered student-level covariates and their interactions with the treatment 

variable (modeled at Level-1) (gender [1=male, 0=female], eligibility for Free or 

Reduced Price Lunch [1=eligible, 0=non-eligible], and minority [non-White] status 

[1=minority, 0=non-minority], the years of teaching experience of a student’s teacher, 
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whether the student’s teacher holds a Master’s degree or higher [1=year, 0=no], and end 

of kindergarten scores on tests of math and reading.) 

2. With the effects in (1) and with the main effects of site-level uncentered covariates 

modeled at level-3 and their interactions with treatment. (Covariates at the school level 

are school averages of uncentered student-level covariates and variables indicating school 

urbanicity [whether a school is inner-city, suburban, rural or urban.]) 
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Appendix D: Deriving the Relationship Between 

In-Sample and Out-of-Sample Large-to-Small Generalizations 

 

We derive an expression for the difference between two variance quantities. The first 

includes the impact for the inference site in the grand mean, and supports an in-sample 

generalization: 

𝜏1
∗ =

1

𝑁
∑ (∆𝑖 −

∑ ∆𝑗𝑖

𝑁
)2𝑁

𝑖=1         (D1) 

The second quantity excludes the inference site from the grand mean and supports an out-

of-sample generalization: 

𝜏1
∗∗ =

1

𝑁
∑ (∆𝑖 −

∑ ∆𝑗𝑗≠𝑖

𝑁−1
)2𝑁

𝑖=1         (D2) 

We rewrite Equation D1 as follows: 

𝜏1
∗ =

1

𝑁
[(∆1 −

(∆1+⋯+∆𝑁)

𝑁
)2 + ⋯ + (∆𝑁 −

(∆1+⋯+∆𝑁)

𝑁
)2]    (D3) 

We rewrite Equation D2 as follows: 

𝜏1
∗∗ =

1

𝑁
[(∆1 −

(∆2+⋯+∆𝑁)

𝑁−1
)2 + ⋯ + (∆𝑁 −

(∆1+⋯+∆𝑁−1)

𝑁−1
)2]    (D4) 

Next, we express 𝜏1
∗ in terms of 𝜏1

∗∗. 

𝜏1
∗ =

1

𝑁
[(∆1 −

(∆1+⋯+∆𝑁)

𝑁
)2 + ⋯ + (∆𝑁 −

(∆1+⋯+∆𝑁)

𝑁
)2]  

=
1

𝑁
{(∆1(

𝑁−1

𝑁
) −

(∆2+⋯+∆𝑁)

𝑁
)

2

+ ⋯ + (∆𝑁(
𝑁−1

𝑁
) −

(∆1+⋯+∆𝑁−1)

𝑁
)

2

}  

=
1

𝑁
{

1

𝑁2 ((𝑁 − 1)∆1 − (∆2 + ⋯ + ∆𝑁))
2

+ ⋯ +
1

𝑁2 ((𝑁 − 1)∆𝑁 − (∆1 + ⋯ + ∆𝑁−1))
2

}  

=
1

𝑁
{

(𝑁−1)2

𝑁2 (∆1 −
(∆2+⋯+∆𝑁)

𝑁−1
)

2

+ ⋯ +
(𝑁−1)2

𝑁2 (∆𝑁 −
(∆1+⋯+∆𝑁−1)

𝑁−1
)

2

}  

=
(𝑁−1)2

𝑁2 {
1

𝑁
(∆1 −

(∆2+⋯+∆𝑁)

𝑁−1
)

2

+ ⋯ +
1

𝑁
(∆𝑁 −

(∆1+⋯+∆𝑁−1)

𝑁−1
)

2

}  

=
(𝑁−1)2

𝑁2 {
1

𝑁
∑ (∆𝑖 −

∑ ∆𝑗𝑗≠𝑖

𝑁−1
)2𝑁

𝑖=1 }  

=
(𝑁−1)2

𝑁2 𝜏1
∗∗    
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= (
𝑁−1

𝑁
)

2

𝜏1
∗∗          (D5) 

The quantity supporting the in-sample generalization is smaller compared to the quantity 

supporting an out-of-sample generalization. This is consistent with the intuition that for an in-

sample generalization, the quantity being generalized is an average across all sites including the 

inference site; therefore, the difference between it and the inference site is slightly reduced 

because the inference site figures into both quantities.  
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Appendix E: Variance Components Estimates and Deviance Statistics for the Main Models 

Table E1. Variance Components Estimates and Deviance Statistics for the Main Models  

 Without class effects With class effects 

Models 1 2 3 4 5 6 

Variance components estimates No covariates 

(base model) 

School-

centered 

student-level 

variables 

only 

School-centered 

student-level 

variables and 

school-level 

variables 

No 

covariates 

(base 

model) 

School-

centered 

student-level 

variables 

only 

School-centered 

student-level 

variables and 

school-level 

variables 

Variance in school deviations in 

average achievement from grand 

mean achievement: 𝜏0̂ 

406.07**** 393.79**** 122.66**** 364.84**** 349.96**** 70.7429** 

Variance in school deviations in 

average impact from grand mean  of 

impact: 𝜏1̂ 

186.51**** 190.28**** 166.7*** 66.8598 59.7474 39.2772 

Covariation between school 

deviations in average achievement 

and average impact from their grand 

mean impacts: 𝜏01̂ 

-86.017 -71.951 -29.357 -52.978 -32.237 15.1589 

Variance in class deviations in 

average achievement within schools: 

𝜈̂    

147.94**** 148.21**** 147.37**** 

 Variance across students within 

schools  𝜎2̂ 

1651.73**** 1536.04**** 1535.59**** 1562.6**** 1448.83**** 1448.36**** 

       

-2 log likelihood statistic 35598.5 35355.7 35280.6 35538.3 35290.6 35214.9 

Number of effects estimated 4 random  

2 fixed 

4 random 12 

fixed (L1) 

4 random 12  

fixed (L1), 20 

fixed (L3) 

5 random  

2 fixed 

5 random 12 

fixed (L3) 

5 random 12  

fixed (L1), 20 

fixed (L3) 
****p<.001, ***p<.01, **p<.05, *p<.10  

n(students)=3452, n(schools)=73;  

L1=Level 1 (student), L3 = Level 3 (school); All fixed effects include main and interaction effects with treatment (e.g., 12 fixed effects at L1 are main effects of 

six covariates and their interactions with treatment.); The average impacts of small classes are .25, .24, .25 and .24 standard deviation units for Models 1, 2, 4 and 

5 (i.e., for models without interactions of treatment with site-level characteristics), each significant at α=.05.
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Figure 1. Representation of the Experimental (XP) Average Treatment Effect of Assignment to T relative to C at site N 
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Figure 2. Representation of the Experimental (XP) Impact Obtained at Site M, ∆𝑋𝑃|𝑀, as Used to Infer Impact at N. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∆𝑋𝑃|𝑁 

 

𝑌𝑁(𝑇) 

𝑌𝑁(𝐶) 

𝑌𝑀(𝐶) 

 

Site 𝑀 Site 𝑁 

Outcome 

Y 
Outcome 

Y 

𝐵𝑖𝑎𝑠1 

𝑌𝑀(𝑇) 

 

∆𝑋𝑃|𝑀 

 

Site 



56 
 

Figure 3. Representation of the Quasi-Experimental Average Treatment Effect (QE1) Inferred to Site N Through Comparison with 

Site M 
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Figure 4. Representation of the Quasi-Experimental Average Treatment Effect (QE2) Inferred to Site N Through a Comparison with 

Site M. 
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Figure 5a. Estimates of Root Mean Squared Bias Without Adjustment for Class-level Random Effects (Expressed in Units of the 

Standard Deviation of the Outcome Distribution) 
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Figure 5b. Estimates of Root Mean Squared Bias With Adjustment for Class-level Random Effects (Expressed in Units of the 

Standard Deviation of the Outcome Distribution) 
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Table 1. Scenarios for Inferring the Average Causal Impact of Program T to Site 𝑁 Through a Comparison of Outcomes from Site 𝑀.    

   
Causal quantity of 

interest 

Missing 

Component 

Quantity used to infer impact 

at N 

 

Bias 

∆𝑋𝑃|𝑁

= 𝑌𝑁(𝑇) − 𝑌𝑁(𝐶) 

None 

(Scenario 1) 

 

∆𝑋𝑃|𝑁 0 

𝑌𝑁(𝐶) 

(Scenario 2) 

 

Option 1: ∆𝑋𝑃|𝑀= 𝑌𝑀(𝑇) − 𝑌𝑀(𝐶) 

 

𝐵𝑖𝑎𝑠1 = ∆𝑋𝑃|𝑀 − ∆𝑋𝑃|𝑁 

Option 2: ∆𝑄𝐸1= 𝑌𝑁(𝑇) − 𝑌𝑀(𝐶) 

 

𝐵𝑖𝑎𝑠2 = 𝑌𝑁(𝐶) − 𝑌𝑀(𝐶) 

𝑌𝑁(𝑇) 

(Scenario 3) 

 

 

Option 1: ∆𝑋𝑃|𝑀= 𝑌𝑀(𝑇) − 𝑌𝑀(𝐶) 

 

𝐵𝑖𝑎𝑠1 = ∆𝑋𝑃|𝑀 − ∆𝑋𝑃|𝑁 

Option 2: ∆𝑄𝐸2= 𝑌𝑀(𝑇) − 𝑌𝑁(𝐶) 𝐵𝑖𝑎𝑠1 − 𝐵𝑖𝑎𝑠2 

= ∆𝑋𝑃|𝑀 − ∆𝑋𝑃|𝑁 − [𝑌𝑁(𝐶) − 𝑌𝑀(𝐶)] 
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Table 2. Estimates of Root Mean Squared Biases for Evaluating Several Approaches to Generalization.  
Research question: On average, 

is there bias 

in the 

experiment-

based (XP) 

generalization

? 

On average, is there 

bias in the 

comparison group-

based generalization 

that involves 

imputing average 

achievement with 

treatment for the 

inference sites (i.e., 

QE2)? 

On average, is there 

bias in the comparison 

group-based 

generalization that 

involves imputing 

average achievement 

in absence of 

treatment for the 

inference sites (i.e, 

QE1)? 

Is the average 

magnitude of bias 

different between the 

experiment-based 

generalization (XP) 

and the one based on 

the non-experimental 

comparison QE2? 

(Scenario 3) 

Is average magnitude 

of bias different 

between the 

experiment-based 

generalization (XP) 

and the one based on 

the non-experimental 

comparison QE1? 

(Scenario 2) 

Is average 

magnitude of 

bias different 

between the 

comparison 

group-based 

generalizations  

QE1 and QE2? 

Null hypothesis:  𝐻0: 𝑀𝑆𝐵𝑋𝑃

= 0 

𝐻0: 𝑀𝑆𝐵𝑄𝐸2 = 0 𝐻0: 𝑀𝑆𝐵𝑄𝐸1 = 0 𝐻0: 𝑀𝑆𝐵𝑄𝐸2 −

𝑀𝑆𝐵𝑋𝑃 = 0  

𝐻0: 𝑀𝑆𝐵𝑄𝐸1

− 𝑀𝑆𝐵𝑋𝑃 = 0 

𝐻0: 𝑀𝑆𝐵𝑄𝐸1 −

𝑀𝑆𝐵𝑄𝐸2 = 0  

Corresponding estimates of 

interest in Figures 5a and 5b 

Height of 

light gray bar 
Height of dark gray 

bar 
Height of black bar  Difference: dark gray 

bar – light gray bar 
Difference: black bar 

– light gray bar  
Difference: 

Black bar –  

dark gray bar 
 Estimates of RMSB (or differences in RMSB) expressed in SD units (not controlling for class-level random sampling error)  

No covariates .31**** .46*** .45**** .15* .14** -.01 
aStudent-level (site-centered) 

covariates only 

.31**** .47*** .44**** .16* .13** -.03 

a Student-level (site-centered) 

and site-level covariates 

.29*** .34*** .25**** .05 -.04 -.09 

 
Estimates of RMSB (or differences in RMSB) expressed in SD units (controlling for class-level random sampling error) 

No covariates .18 

 

.40** .43**** .22* .14** .03 

aSite-centered student-level 

covariates only 

.17 

 

.42** .42**** .25** .25** 0.00 

a Student-level (site-centered) 

and site-level covariates 

.14 

 

.27 

 

.19** .13 

 

.05 

 

-.08 

****p<.001, ***p<.01, **p<.05, *p<.10  
aModels include the main effects of the covariates and their interactions with treatment. 

Note: the values displayed are the square roots of estimates of corresponding MSB divided by the standard deviation of the outcome variable. Expressing results in the 

metric of the standardized effect size allows comparison with values for average impact and yearly expected growth. For example, the average impact of small classes on 

second grade reading performance in this experiment is .24-.25 (similar to results in Nye, Hedges and Konstantopoulos, 2000). For reference, annual expected growth in 

second grade reading scores is approximately .60 standard deviations (Hill et al., 2008).      

Covariates at the student level (all school centered) are: gender (1=male, 0=female), eligibility for Free or Reduced Price Lunch (1=eligible, 0=non-eligible), and minority 

(non-White) status (1=minority, 0=non-minority), the years of teaching experience of a student’s teacher, whether the student’s teacher holds a Master’s degree or higher 

(1=year, 0=no), and end of kindergarten scores on tests of math and reading. Covariates at the school level are school averages of uncentered student-level covariates and 

variables indicating school urbanicity (whether a school is inner-city, suburban, rural or urban.)   



62 
 

Supplement 1: Demonstrating that the Results do not Reflect Model Overspecification  

 

A possible concern is that the results of analysis that involves adjustment for school-level 

covariates reflect model overspecification. More specifically, our data included 73 schools. The 

most saturated model included 7 continuous variable school-level variables, and a 4-level 

categorical variable indicating school urbanicity. The most saturated model included both main 

effects of these covariates and their interactions with treatment.     

 

Model overspecification may bias the estimates of variance components, on which the 

results of this work rely. 

 

To assess whether over-specification is occurring we examined results for 44 models 

where we gradually introduced predetermined sets of school-level covariates, and their 

interactions with treatment, into the models. 

 

We observed that inclusion of specific sets of school-level covariates produced similar 

relative changes in estimated variance components regardless of how many school-level 

covariates were already in the model. If the models were overfitted, we would instead expect 

estimates of variance components to be less robust when including school-level covariates for 

more-saturated models.   

 

The results from the 44 models are summarized in Figure SB1 below (The sets of 

covariates and school main effects used with each model are displayed in Table SB1). It shows 

the estimates of 𝜏0, 𝜏1, 𝜏01 and 𝜈 for different combinations of covariates.   

 

The results on the left half of the display (models A0 – C7), show parameter estimates 

without a class-level random effect. The results on the right half (models D0 – F7) , show 

corresponding estimates after inclusion of a class-level random effect. (The line with longer 

black dashes is the estimate of the variance component for classes, and it appears only on the 

right half of the figure.) 

 

The six vertical bands in different shades show a similar progression of models: 

 

Vertical band 1 (white): includes models with no teacher random effects, no interactions 

between site-level covariates with treatment, and gradual introduction of main effects of site-

level covariates: 

 A0: no site-level covariates (no main effects of school-level covariates). 

A1: two teacher-based school-level covariates: proportion of teachers with advanced  

degree, average years teaching (2 main effects of school-level covariates). 

 A2: three student-based school-level covariates: proportion low-SES, proportion male,  

proportion minority (3 main effects of school-level covariates). 

A3: two student-based school-level covariates: end-of-K school average math and  

reading achievement scores (2 main effects school-level covariates).    

 A4: three indicators for four levels of urbanicity (3 main effects of school-level  

covariates). 

 A5: all student-based covariates (in A2 and A3) (5 main effects school-level covariates). 
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A6: all student-based and teacher-based covariates (in A1 - A3) (7 main effects  

of school-level covariates). 

 A7: all covariates (10 main effects of school-level covariates). 

 

Relatively few school-level covariates (at most 10 with a sample size of 73 schools) are 

introduced with this set of models, thereby limiting risk of bias from over-specification.   

 We observe that between-school variation in average performance (solid black line) is 

differentially reduced depending on which main effects of school-level covariates are modeled. 

The lowest estimated between-school variability in average achievement is achieved when all 10 

covariates are included (model A7). The school variation in impact (gray line) is stable, which 

we expect given that moderating effects of the school-level variables on the impact are not 

included in these models. (The number of terms involving school-level covariates across the 

eight models A0 – A7 is 0, 2, 3, 2, 3, 5, 7 and 10)  

 

Vertical band 2 (light gray): includes models like in the first vertical band, except we double 

the number of terms involving school-level covariates in each model by introducing the 

corresponding interactions with treatment. For example, model B3 includes the same three 

student-based school-level covariates as model A2, but also includes the interactions of those 

variables with treatment, resulting in six terms with school-level covariates.   

 A larger number of covariates is used with this set of models, introducing more risk of 

bias due to model overspecification. However, if we compare results of models A1 – A7 (vertical 

band 1) with corresponding models B1 – B7 (vertical band 2) we see that the school variation in 

average performance (solid black line) is almost parallel across band 1 and band 2. We also see 

that introducing interactions of treatment with school-level variables leads to a small degree of 

fluctuation in estimates of school variation in impact (gray line) across the models B1 – B7 (as 

compared to the nearly flat line in A1 – A7).   

 Increasing the number of effects involving school-level variables leads to minor 

departures in estimates of variance component from corresponding less-parameterized models.  

(The number of terms involving school-level covariates across the seven models B1 – B7 is 4, 6, 

4, 6, 10, 14 and 20.)     

 

Vertical band 3 (darker gray): the models include the main effects of all 10 school-level 

covariates, and then introduce interactions between site-level covariates and treatment 

corresponding to those used with models in vertical band 2. Therefore, the number of terms 

involving school-level covariates is 10+2 for Model C1, 10+3 for Model C2, 10+2 for Model C3, 

etc.  

We observe that the school variation in average performance across models (solid black 

line) is almost flat, which reflects that we are consistently including all main effects of school-

level covariates across models C1 – C7. Also, inclusion of interactions of treatment with school-

level variables leads to a relatively small fluctuation in school variation in impact (gray line) 

across the models, similar to what we observed with corresponding models in vertical band 2. 

Increasing the number of effects involving school-level variables leads to minor 

departures in estimates of the variation in the treatment effect across schools compared to 

corresponding less-parameterized models. (The number of terms involving school-level 

covariates across the seven models C1 – C7 is 12, 13, 12, 13, 15, 17 and 20.) 
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Vertical bands 4, 5 and 6: The models correspond exactly to those in vertical bands 1, 2 and 3, 

respectively, except a class random effect has been included. 

 The pattern almost exactly parallels the one across vertical bands 1, 2 and 3 except that 

there is a uniform downward shift in the variance across schools in average performance, and a 

proportionately larger downward shift in the variance across schools in average impact. The 

within-school variation between-classes is now added (represented by the solid black line with 

longer dashes.)  

 As above, if the results were becoming biased with the inclusion of a larger number of 

terms involving site-level covariates, we would expect greater instability of the variance  

components estimates, potentially with a large reduction in their values as the number of 

covariates increases. We do not observe this trend. First, we observe the same relative reductions 

in variability in average outcomes across schools with the addition of main effects of site-level 

covariates, regardless of how many covariates are already in the model. Second, we observe little 

fluctuation in the variance component for impact across schools across the models. The only 

factor that makes an across-the-board difference in estimates of the variance components is the 

inclusion of the class-level random effect.     
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Table SB1. School-level Variables Included in Tests of Sensitivity of Variance Components Estimates to 

Model Overspecification 
 Main effects of: Interactions of treatment with: Random effects: 
Model TB SB PRE URB TB SB PRE URB 𝜏0 𝜏1 𝜏10 v 𝜎2 

A0         * * *  * 

A1 *        * * *  * 

A2  *       * * *  * 

A3   *      * * *  * 

A4    *     * * *  * 

A5  * *      * * *  * 

A6 * * *      * * *  * 

A7 * * * *     * * *  * 

B1 *    *    * * *  * 

B2  *    *   * * *  * 

B3   *    *  * * *  * 

B4    *    * * * *  * 

B5  * *   * *  * * *  * 

B6 * * *  * * *  * * *  * 

B7 * * * * * * * * * * *  * 

C1 * * * * *    * * *  * 

C2 * * * *  *   * * *  * 

C3 * * * *   *  * * *  * 

C4 * * * *    * * * *  * 

C5 * * * *  * *  * * *  * 

C6 * * * * * * *  * * *  * 

C7 * * * * * * * * * * *  * 

D0         * * * * * 

D1 *        * * * * * 

D2  *       * * * * * 

D3   *      * * * * * 

D4    *     * * * * * 

D5  * *      * * * * * 

D6 * * *      * * * * * 

D7 * * * *     * * * * * 

E1 *    *    * * * * * 

E2  *    *   * * * * * 

E3   *    *  * * * * * 

E4    *    * * * * * * 

E5  * *   * *  * * * * * 

E6 * * *  * * *  * * * * * 

E7 * * * * * * * * * * * * * 

F1 * * * * *    * * * * * 

F2 * * * *  *   * * * * * 

F3 * * * *   *  * * * * * 

F4 * * * *    * * * * * * 

F5 * * * *  * *  * * * * * 

F6 * * * * * * *  * * * * * 

F7 * * * * * * * * * * * * * 

All effects displayed are of school level variables. (Student-level site-centered covariates and their 

interactions with treatment are included in each model) 

TB=teacher-based, SB=student-base (except pretests), PRE=pretests, URB=urbanicity 
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Figure SB1. Variance and Covariance Estimates for Multiple Models with and Without Class-Level Random Effets and Adjusting for Effects of 

Specific Covariates.    
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