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Abstract

The longitudinal individual response profiles could exhibit a mixture of two or more phases of increase or decrease in trend

throughout the follow up period, with one or more unknown transition points usually referred to as breakpoints or change

points. The existence of such unknown point disturbs the sample characteristics, so the detection and estimation of these

points is crucial. Most of the proposed statistical methods in literature, for detecting and estimating change points, assume

distributional assumption that may not hold. A good alternative in this case is to use a robust approach which is the quantile

regression model. There are trials in the literature to deal with quantile regression models with a change point. These trials

ignore the within subject dependence of longitudinal data. In this paper we propose a mixed effect quantile regression model

with a change point to account for dependence structure in the longitudinal data. Fixed effect parameters, in addition to the

location of the change point, are estimated using profile estimation method. The stochastic approximation EM algorithm is

proposed to estimate the fixed effect parameters exploiting the link between asymptotic Laplace distribution and the quantile

regression. In addition, the location of the change point is estimated using the usual optimization methods. A simulation study

shows that the proposed estimation and inferential procedures perform reasonably well in finite samples. The practical use of

the proposed model is illustrated using a COVID-19 data. The data focus on the effect of global economic and health factors

on the monthly death rate due to COVID-19 during from the 1st of April 2020 till the 31st of April 2021.
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Abstract 

The longitudinal individual response profiles could exhibit a mixture of two or more phases of increase 

or decrease in trend throughout the follow up period, with one or more unknown transition points usually 

referred to as breakpoints or change points.  The existence of such unknown point disturbs the sample 

characteristics, so the detection and estimation of these points is crucial. Most of the proposed statistical 

methods in literature, for detecting and estimating change points, assume distributional assumption that 

may not hold. A good alternative in this case is to use a robust approach which is the quantile regression 

model.  There are trials in the literature to deal with quantile regression models with a change point. These 

trials ignore the within subject dependence of longitudinal data.  

In this paper we propose a mixed effect quantile regression model with a change point to account for 

dependence structure in the longitudinal data. Fixed effect parameters, in addition to the location of the 

change point, are estimated using profile estimation method. The stochastic approximation EM algorithm 

is proposed to estimate the fixed effect parameters exploiting the link between asymptotic Laplace 

distribution and the quantile regression. In addition, the location of the change point is estimated using the 

usual optimization methods. A simulation study shows that the proposed estimation and inferential 

procedures perform reasonably well in finite samples. The practical use of the proposed model is illustrated 

using a COVID-19 data. The data focus on the effect of global economic and health factors on the monthly 

death rate due to COVID-19 during from the 1st of April 2020 till the 31st of April 2021. 

Keywords: Longitudinal data, change point model, COVID-19, mixed effects quantile regression, 

bent line quantile regression, missing data. 

1. Introduction  

Longitudinal studies play a prominent role in the health, social, and behavioral sciences  and 

many other disciplines. A response variable, of the same individual, is measured repeatedly over 

time, or under different conditions. The main aim of longitudinal studies is to study the change in 

the response variable over time. The measurements of the same subject tend to be correlated. 

Hence, special statistical analysis methods are needed for longitudinal data to accommodate the 

potential patterns of correlation. Ignoring such correlation may lead to invalid statistical inferences 

[1].  

The longitudinal individual response profiles could exhibit a mixture of two or more phases of 

increase or decrease in trend, throughout the follow up period. This is could be at one or more 

unknown transition points, usually referred to as breakpoints or changepoints. Such changepoints 
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are very common in public health, medical, and many other disciplines. Change point models are 

useful to determine when changes have taken place, and to use one model for whole data. Change 

point models with one change point and two linear phases are most used specially in biological 

data  [2]. Recently, there has been an increased interest of application of change point models to 

longitudinal data. In Bayesian framework, see for example, Ghosh and Vaida [3], Yang and Gao 

[2], McLain, and Albert [4]. Xing and Ying [5] propose a semi-parametric changepoint regression 

model for longitudinal data. Lai and Albert [6] propose a linear mixed effects modeling framework 

for multiple change points in longitudinal Gaussian data.  

Most of the proposed techniques to fit longitudinal data with change points rely upon 

distributional assumptions, such as the normality. These distributional assumptions may not 

generally hold. On the other hand, in some applications, the relationship between the response and 

covariates at the tails, rather than the center of the distribution are of main interest  [7]. The quantile 

regression model is a good alternative when the distributional assumptions are violated. The 

quantile regression does not require distributional assumption. The quantile regression fits the 

conditional quantiles of the response variable given a set of covariates. The main advantage of the 

quantile regression is its ability to provide a more complete picture of the conditional distribution 

of the response variable given the covariates. The quantile regression is particularly useful when 

upper or lower (or any other) quantiles are of interest. It is more flexible for modeling data with 

heterogeneous conditional distributions. Also, the quantile regression is robust to outliers in the 

response variable. There are trials in literature to use the quantile regression or the median 

regression in longitudinal data context. Some of these trials employ the marginal models, see for 

example, Jung [8]; Wang & Fygenson [9]; and Gad & Ibrahim [1]. 

Li et al. [7]extend the quantile regression model with a change point, introduced by Li et al. 

[10], to accommodate  longitudinal data. These models ignore the within subject dependence  [7], 

[11]. Incorporating random effects in these models is a remedy to accommodate the within subject 

dependence. Yu and Moyeed [12] use the connection between the asymmetric Laplace distribution 

(ALD) and quantile regression model to incorporate random effects in the model. Liu and Bottai 

[13] develop a likelihood based inferential approach for estimating parameters of mixed effects 

quantile regression models. They assume an ALD for the errors and multivariate Laplace 

distribution (MLD) for the random effects. They use MCEM algorithm for estimation and 

inference.  

There are different stochastic algorithms to estimate the parameters for mixed effect quantile 

models rather than MCEM, such as stochastic approximation EM (SAEM) algorithm [14]. The 

SEM algorithm approximates the E-step of the EM algorithm, by splitting the E-step, into a 

simulation step and an integration step. The SAEM algorithm has been proved to be more 

computationally efficient than the classical MCEM algorithm. This is because reusing of 

simulations from one cycle to the another within the smoothing phase of the algorithm. Meza, et 

al. [14] state that the SAEM algorithm converges in small number of simulations unlike the MCEM 

algorithm, which needs large number of simulations.  
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The aim of this article is to extend the quantile regression model with change point to 

accommodate the within subject dependence. This is tackled via incorporating random effects to 

the model. A likelihood based inferential approach is developed by assuming an ALD for the errors 

and a MLD distribution for the random effects. The advantage of using the multivariate Laplace 

distribution is to accommodate any possible outliers. Also, it can handle heavy-tailed distributions. 

A stochastic approximation EM (SAEM) algorithm is proposed to obtain the maximum likelihood 

estimates of the fixed effects.  

The proposed techniques are evaluated using a simulation study. Also, the proposed techniques 

are illustrated by a real data. The aim of the data is to the study global economic and health factors 

that affect the monthly death rate due to COVID-19, during from the 1st of April 2020 till the 31st 

of April 2021. As reported by WHO, there are more than 3 million deaths due to COVID-19 by 

the end of April 2021. Many studies tried to understand the factors behind the spread of the disease 

and the factors that affect the number of deaths throughout the world. This enables us to minimize 

the losses faced due to the COVID-19. Different factors are considered, in this article,  including 

a composite index measuring average achievement in three basic dimensions of human 

development: a long and healthy life, knowledge and a decent standard of living (HDI). The HDI 

ranges from 0 to1, where 1 indicates higher human development in the three dimensions. 

The rest of this article is organized as follows. Section 2 presents the proposed quantile 

regression model and the estimation procedure. Simulation studies are conducted to assess the 

performance of the proposed techniques and to study goodness of fit for the proposed model. The 

simulation results are presented in Section 3. The proposed model is applied to COVID-19 data in 

Section 4. We test if there is a threshold effect (change-point) in the relationship between the HDI 

and new monthly deaths per million. Finally, Section 5 is devoted to concluding remarks and future 

work. 

2. The Proposed Model and Estimation Procedure 

2.1. The model 

Li et al. [7] extend the quantile regression model with a change point, introduced by Li et al 

[10], to accommodate  longitudinal data. However, this model ignores the within subject 

dependence Sha [11] and Li et al.  [7].  We suggest extending this model to account for the within 

subject dependence by adding random effects, to capture the dependence structure of longitudinal 

data. The proposed model can be written as: 

        𝑦𝑖𝑗 =  𝛼𝜏 + (𝛽1,𝜏𝐼{𝑥𝑖𝑗 ≤ 𝑡𝜏} +  𝛽2,𝜏𝐼{𝑥𝑖𝑗 ≥ 𝑡𝜏})(𝑥𝑖𝑗 − 𝑡𝜏) + 𝑠𝑖𝑗
𝑇 𝛾𝜏 + 𝑧𝑖𝑗

𝑇 𝑈𝑖 + 𝜀𝜏,𝑖𝑗 ,             (1)  

 for 𝑗 = 1, … … . , 𝑚𝑖,   𝑖 = 1, … … . , 𝑛, where 𝑦𝑖𝑗 is the response variable of subject i at time point 

j, 𝑥𝑖𝑗  is the covariate whose slope changes at an unknown change-point tτ and sij is a q-

dimensional vector of linear covariates with constant slopes. Also, 𝑧𝑖𝑗 is a 𝑝 × 1  subset of 𝑠𝑖𝑗 with 

random effects; 𝑈𝑖 is a 𝑝 × 1  vector of random regression coefficients; the τth conditional quantile 

of ετ,ij given 𝑥𝑖𝑗  , zij, and sij  is 0, and ετ,ij is assumed to be independently distributed as asymmetric 

Laplace distribution (ALD). The random regression coefficients 𝑈𝑖, which account for the 

correlation among observations, are assumed to be mutually independent and to follow 
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multivariate Laplace distribution (MLD). Independence between 𝑈𝑖 and  ετ,ij , and between the 

random regression coefficients  𝑈𝑖 and the explanatory variables 𝑥𝑖𝑗 , sij , are assumed.   All the 

model parameters may be expressed as 𝜃𝜏 = ( 𝛼𝜏, 𝛽1,𝜏, 𝛽2,𝜏, 𝑡𝜏, 𝛾𝜏
𝑇)

𝑇
  and 𝜂𝜏 =   ( 𝛼𝜏, 𝛽1,𝜏, 𝛽2,𝜏,

𝛾𝜏
𝑇)

𝑇
. 

In practice, the normality assumption of the random effects may be violated for many reasons, 

such as outliers, contaminated data, and heavy tailed distributions. The multivariate Laplace 

distribution is a good robust alternative in this case [15]. The distribution of the random effects 𝑈𝑖  

in model (1) is assumed to be a symmetric multivariate Laplace distribution with zero-mean as 

𝑓(𝑈𝑖| Σ)= 
2

(2π)
P
2    |Σ|−

1
2

  (
𝑈𝑖

𝑇𝛴−1𝑈𝑖

2
)

𝜈

2
× 𝐾𝜈 √2 (𝑈𝑖

𝑇𝛴−1𝑈𝑖), 

where 𝛴 is a 𝑃 ×  𝑃 covariance matrix, 𝜈 =
2 − 𝑃

2
 and 𝐾𝜈(𝑢) is the modified Bessel function of the 

third kind which is given by   

𝐾𝜈(𝑢) =
1

2
(

𝑢

2
)

𝜈

∫ 𝑡−𝜆−1 exp (−𝑡 −
𝑢2

4𝑡
) 𝑑𝑡 , 𝑢 > 0 

∞

1

. 

2.2. Estimation and inference 

The estimates θn̂(τ) are obtained by minimizing the objective function:  

𝑄𝑛,𝜏(θ) = ∑ 𝜌𝜏(𝑦𝑖𝑗 −𝑖𝑗  g (𝐿𝑖𝑗; 𝛳 )), 

where 𝜌𝜏(𝑢) =  𝑢(𝜏 − 𝐼(𝑢 ≤ 0))  is the quantile loss function, and  𝐿𝑖𝑗 = (1, 𝑥𝑖𝑗 , 𝑧𝑖𝑗
𝑇 , 𝑠𝑖𝑗

𝑇 )
𝑇

.   

However, due to the presence of change point, the objective function 𝑄𝑛,𝜏(θ) is non-convex [7]. 

Hence, the estimates θn̂(τ) are obtained via profile estimation. The stochastic approximation EM 

algorithm is used to estimate the fixed effect parameters 𝜂𝜏. The estimates can be obtained using 

the link between ALD and the quantile regression. In addition, the location of the change point is 

estimated using the optimization methods.   

      At fixed t, the profile estimator 𝜂  given by  

                          𝜂𝑛,�̂�(𝑡) = arg min
𝜂∈𝑅3+𝑞

𝑄𝑛,𝜏(η, t).                                                                          (2)  

We propose the stochastic approximation EM algorithm (SAEM) to estimate 𝜂𝜏(𝑡). An estimator 

of the change point t is given by 

                              𝑡𝑛,�̂� = arg min
𝑡∈(𝑎,𝑏)∩(𝑋𝑛(2),   𝑋𝑛(𝑛−1))

𝑄𝑛,𝜏(𝜂𝑛,�̂�(𝑡), t),                                            (3) 

where a and b are two constants such that 𝑡𝜏 is thought to be in the interval (a, b), usually 

determined graphically, and 𝑋𝑛(2) and 𝑋𝑛(𝑛−1) are the 2nd and (n−1)th order statistics of 𝑋𝑖𝑗
′ 𝑠, 

respectively. Then θn̂(τ)  is obtained  𝜂𝑛,�̂�(𝑡𝑛,�̂�), and 𝑡𝑛,�̂�. The  optimization method that is  used 

to minimize 𝑄𝑛,𝜏(𝜂𝑛,�̂�(𝑡), t)  is a combination of golden section search and successive parabolic 

interpolation, implemented by the function “optimize” in R package as suggested by  Li et al. [7]. 
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2.2.1. The SAEM algorithm to estimate  𝜼𝝉(𝒕) 

       Galarza, et al. [16] use the SAEM algorithm to develop a likelihood-based approach to fit the 

quantile regression model, for continuous longitudinal data, using ALD distribution. They assume 

that the distribution for the random effects is multivariate Gaussian.   In this article, we assume that 

the random effects follow an ALD. At fixed t, minimizing the loss function in  Eq. (2) is the same 

as maximizing the ALD likelihood function. Likelihood based inferential approach is developed 

to estimate 𝜂𝑛,�̂�(𝑡) in Eq. (2) by using the connection between the ALD distribution and the 

quantile regression [12]. This is done by assuming an ALD for the errors and a multivariate 

distribution for the random effects. At fixed t, the conditional the density function of  𝑦𝑖𝑗|𝑈𝑖  can 

be written as 

𝑓(𝑦𝑖𝑗|𝑈𝑖 , 𝑥𝑖𝑗 , 𝑆𝑖𝑗; 𝜂𝜏(𝑡), 𝜎) =   
𝜏(1 − 𝜏)

𝜎
exp {−𝜌𝜏 (

𝑦𝑖𝑗 −  𝜇𝑖𝑗

𝜎
)}, 

where  

𝜇𝑖𝑗 =  𝛼𝜏 + (𝛽1,𝜏𝐼{𝑥𝑖𝑗 ≤ 𝑡𝜏} +  𝛽2,𝜏𝐼{𝑥𝑖𝑗 ≥ 𝑡𝜏})(𝑥𝑖𝑗 − 𝑡𝜏) + 𝑠𝑖𝑗
𝑇 𝛾𝜏 + 𝑧𝑖𝑗

𝑇 𝑈𝑖 

is a linear predictor of the 𝜏𝑡ℎ  quantile function at fixed t. Theτis assumed to be fixed and known. 

 Let  

𝑓(𝑌𝑖|𝑈𝑖, 𝑋𝑖, 𝑆𝑖; 𝜂𝜏(𝑡), 𝜎) =  ∏ 𝑓(𝑦𝑖𝑗|𝑈𝑖, 𝑥𝑖𝑗 , 𝑠𝑖𝑗; 𝜂𝜏(𝑡), 𝜎)

𝑚𝑖

𝑗=1

, 

be the density for the 𝑖𝑡ℎ subject conditional on the random effect 𝑈𝑖, where  

𝑌𝑖 = [𝑦𝑖1 𝑦𝑖2 … . 𝑦𝑖𝑚𝑖]𝑇, 𝑋𝑖 = [𝑥𝑖1 𝑥𝑖2 … . 𝑥𝑖𝑚𝑖]𝑇, 

and 

𝑆𝑖 =  [𝑠𝑖1 𝑠𝑖2 … . 𝑠𝑖𝑚𝑖]𝑇 . 

The complete data density of (𝑌𝑖, 𝑈𝑖), for 𝑖 = 1, 2, … … … . . , 𝑚𝑖, is then given by  

𝑓(𝑌𝑖, 𝑈𝑖| 𝑋𝑖, 𝑆𝑖; 𝜔) = 𝑓(𝑌𝑖|𝑈𝑖, 𝑋𝑖, 𝑆𝑖; 𝜂𝜏(𝑡), 𝜎).  𝑓(𝑈𝑖| 𝑋𝑖, 𝑆𝑖; Σ). 

𝑓(𝑌𝑖, 𝑈𝑖| 𝑋𝑖, 𝑆𝑖; 𝜔) = 𝑓(𝑌𝑖|𝑈𝑖, 𝑋𝑖, 𝑆𝑖; 𝜂𝜏(𝑡), 𝜎). 𝑓(𝑈𝑖| Σ).   

As 𝑈𝑖 and the explanatory variables 𝑋𝑖 , Si, are assumed to be independent, 𝑓(𝑈𝑖| Σ)  is the density 

of 𝑈𝑖 , and 𝜔 =  (𝜂𝜏(𝑡), 𝜎, Σ)   is the set of parameters of interest. If we let 𝑌 = (𝑌1, 𝑌2, … … 𝑌𝑛), 

𝑋 = (𝑋1, 𝑋2, … … 𝑋𝑛), 𝑆 = (𝑆1, 𝑆2, … … 𝑆𝑛), and 𝑈 = (𝑈1, 𝑈2, … … 𝑈𝑛), the joint density of (Y, U) 

based on the n subjects  is given by  

                   𝑓(𝑌, 𝑈| 𝑋, 𝑆; 𝜔) = ∏ 𝑓(𝑌𝑖|𝑈𝑖, 𝑋𝑖, 𝑆𝑖; 𝜂𝜏(𝑡), 𝜎). 𝑓(𝑈𝑖| Σ)𝑛
𝑖=1  .                           (4) 

      The maximum likelihood estimates for the parameter ω is obtained by maximizing the 

marginal density 𝑓(𝑌|𝜔), which is obtained by integrating out the random effect 𝑈 in Eq. (4). That 

is 𝐿(ω; 𝑌)= ∫ (𝑓(𝑌|𝑈;  ω) . 𝑓(𝑈;  Σ) 𝑑 𝑈.  In many cases, this integral has no closed form. Hence, 

the SAEM algorithm is proposed to maximize this function. Within this algorithm the random 

effects are considered as unobserved (missing values). 

The three steps of the SAEM are as follow. 

• Simulation step 
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In the simulation step, at the (s+1) step, a sample of size  𝑙(𝑠+1) is generated from the 

conditional distribution  𝑓(𝑈𝑖|𝑌𝑖;  𝜔𝑠), i.e. 

𝑈𝑖𝑘
𝑠+1~𝑓(𝑈𝑖|𝑌𝑖;  𝜔𝑠)   for 𝑘 = 1, 2, 3, … , 𝑙(𝑠+1). 

The conditional distribution does not have a standard form. Thus, the Metropolis-Hastings 

algorithm is adopted. The iterations are as follows [17]. 

1. Initialize the parameters  𝜔𝑠 =  (𝜂𝜏
𝑠(𝑡), 𝜎𝑠 , Σs) at s=0.   

2. For each subject, independently draw a sample {𝑈𝑖
𝑠

𝑘
: k=1,…., 𝑙(𝑠+1)} from the conditional 

distribution 𝑓(𝑈𝑖|𝑌𝑖;  𝜔𝑠) using Metropolis-Hastings algorithm.  The proposal distribution is 

the density of the random effects 𝑓(𝑈𝑖), while 𝑓(𝑈𝑖|𝑌𝑖;  𝜔𝑠) is the target distribution that takes 

the following form 

𝑓(𝑈𝑖|𝑌𝑖;  𝜔𝑠) ∝  𝑓(𝑌𝑖|𝑈𝑖, 𝑋𝑖, 𝑆𝑖; 𝜂𝜏
𝑠(𝑡), 𝜎). 𝑓(𝑈𝑖| Σ

𝑠). 

The choice of the proposal distribution is essential for convergence of the Metropolis-Hastings 

algorithm. Different choices of the proposal covariance matrix lead to different results. If the 

variability is very small, then all moves will be accepted. However, the chain will not mix well. 

On the other hand, if the variability is very large, then most proposed moves will be rejected; 

consequently, the chain will not move. A simple solution to this problem is to calculate the 

acceptance rate (the fraction of proposed moves that are accepted) and choose the value of the 

standard deviation so that the acceptance rate is far from 0 and far from 1 [18]. 

• Integration step  

The integration step involves approximating the Q-function. At the (s+1)th iteration, the Q-

function approximated as: 

𝑄(ω|ω(𝑠+1)) = (1 − 𝜑𝑠)𝑄(ω|ω(s)) + 𝜑𝑠

1

𝑙𝑠+1
 ∑ 𝐿( ω; 𝑌𝑖, 𝑈𝑖𝑘

(𝑠+1)
)

𝑙𝑠+1

𝑘=1

 

                                     =  𝑄(ω|ω(s)) + 𝜑𝑠 {
1

𝑙𝑠+1
 ∑ 𝐿( ω; 𝑌𝑖 , 𝑈𝑖𝑘

(𝑠+1)
)

𝑙𝑠+1
𝑘=1 −  𝑄(ω|ω(s))},      (5) 

where 𝜑𝑠 is a smoothness parameter which is a decreasing sequence of positive numbers such that  

∑ 𝜑𝑡
∞
𝑡=1 → ∞, and ∑ 𝜑𝑡

∞
𝑡=1

2
<  ∞,  𝐿( ω; 𝑌𝑖, 𝑈𝑖

(𝑠+1)
) is the pseudo log-likelihood for the 

𝑖𝑡ℎ subject at (s+1) step.  The pseudo log-likelihood takes the following form 

𝐿( ω;  𝑌, 𝑈) = log ∏ 𝑓(𝑌𝑖|𝑈𝑖, 𝑋𝑖, 𝑆𝑖; 𝜂𝜏(𝑡), 𝜎). 𝑓(𝑈𝑖| Σ)

𝑛

𝑖=1

 

=  ∑ log (

𝑛

𝑖=1

 𝑓(𝑌𝑖|𝑈𝑖, 𝑋𝑖, 𝑆𝑖; 𝜂𝜏(𝑡), 𝜎). 𝑓(𝑈𝑖| Σ)) 

                                        =  ∑ log (𝑛
𝑖=1  𝑓(𝑌𝑖|𝑈𝑖, 𝑋𝑖, 𝑆𝑖; 𝜂𝜏(𝑡), 𝜎)) + ∑ log (𝑛

𝑖=1  𝑓(𝑈𝑖| Σ)). 

• The maximization step  
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In the maximization step,  𝑄(ω|ω(s)) is maximized to update the parameter estimates.  

The above steps are repeated until convergence. The value of the smoothing parameter  𝜑𝑡 

governs the convergence of the estimates. If the smoothing parameter 𝜑𝑡 is equal to 1 for all 

iterations, then the SAEM algorithm will be equivalent to the MCEM algorithm. This is because 

the algorithm does not take any memory into consideration. In this case the SAEM will converge 

quickly (convergence in distribution) to a neighborhood solution. On the other hand, when the 

smoothing parameter 𝜑𝑡 is different from 1, the algorithm will converge slowly (almost sure 

convergence) to the ML solution [16]. 

Galarza, et al. [16] suggest the following choice of the smoothing parameter: 

𝜑𝑡 = {
1                         1 ≤ 𝑆 ≤ 𝑐𝑊
1

𝑇−𝑐𝑊
        𝑐𝑊 + 1 ≤ 𝑆 ≤ ≤ 𝑊}, 

where W is the maximum number of Monte-Carlo iterations, and c determines the percentage of 

initial iterations with no memory. It takes a value between 0 and 1. That is the algorithm will have 

memory for all iterations if c = 0, and in this case the algorithm will converge slowly to the ML 

estimates, and W needed to be large to achieve the ML estimates. However, if c = 1, the algorithm 

will have no memory, and so will converge quickly to a neighborhood solution. In this case (c=1) 

the algorithm will results in a Markov chain where the mean of the chain observations can be a 

satisfactory estimate, after removing a burn-in period [16]. A number between 0 and 1 (0 < c < 1) 

will ensure an initial convergence, in distribution, to a solution neighborhood for the first cW 

iterations, and an almost sure convergence for the rest of the iterations. Hence, this combination 

will lead to a fast algorithm with good estimates.  

       For the SAEM algorithm, the E-Step coincides with the MCEM algorithm, but a small number 

of simulations l (advised to be l ≤ 20) is necessary. This is feasible because the SAEM algorithm 

uses some or all previous simulations, not only the current simulation of the missing data. This 

‘memory’ property is set by the smoothing parameter 𝜑𝑡, and this unlike the traditional EM 

algorithm and its variants [16]. 

     When implementing the SAEM algorithm, several settings must be fixed. These include the 

number of total iterations W and the cut point c that defines the starting of the smoothing step. 

However, choosing those parameters depend on the model and the data. A graphical approach is a 

possible to choose these constants, such that the convergence of the estimates for all the parameters 

can be monitored. Also,  it is possible to monitor the difference (relative difference) between two 

successive evaluations of the log-likelihood 𝑙(ω|Yi), given by ‖𝑙(ωs|Yi) −  𝑙(ωs+1|Yi)‖ or  

‖
𝑙(ωs+1

|Yi)

𝑙(ωs
|Yi)

− 1‖  respectively. Also, the Akaike information criteria (AIC) can be calculated from 

the final estimated log-likelihood to evaluate the model fit. 

2.2.2 Standard errors and confidence intervals 

The construction of confidence intervals, calculating standard errors, and calculating P-values 

of the parameters is usually based on the asymptotic normality of the maximum likelihood 

estimator (MLE). There are trials in the literature that study the asymptotic theory for quantile 

regression, but the development of convenient inference procedures has been still challenging. 
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This is because the asymptotic covariance matrix of quantile estimates involves the unknown error 

density function, which cannot be estimated reliably [13]. 

 In our case, the error term has been set to be ALD, and for a given τ, the mode of ALD is 

located at the 𝜏𝑡ℎ  quantile of residuals. Maximizing the likelihood may lead to unbiased point 

estimate, but in some cases, the error may not be distributed as ALD. Also, the density function 

might not be differentiable with respect to parameters. There are some alternatives, that provide 

inference for quantile regression with longitudinal data, such as the rank score test proposed by 

Wang and Fygenson [9], and the block bootstrap method which has been applied in Buchinsky 

[19] and Lipsitz, et al. [20]. We consider the block bootstrap method to construct the confidence 

intervals for 𝛽𝜏. The bootstrap method has been widely used in applications of quantile regression. 

To retain the dependent structure in a longitudinal data, independent subjects are assumed and the 

𝑥𝑦-pairs from each subject {(𝑌𝑖, 𝑋𝑖)}, for 𝑖 =  1, . . . , 𝑛 are treated as basic resampling units. We 

sample from the original data, with replacement B times [1]. The practical question about choosing 

the number of replications B was addressed by [21]. 

3. Simulation Study  

The aim of this simulation study is twofold.  The first is to assess the performance of the 

proposed techniques and to compare its performance with the method of Li, et. Al. [7], when the 

error follows a symmetric distribution. The second is to test the performance of the proposed 

techniques when the errors follow a skewed distribution.  

We consider the following linear mixed change point model: 

𝑦𝑖𝑗 =  𝛼𝜏 + (𝛽1,𝜏𝐼{𝑥𝑖𝑗 ≤ 𝑡𝜏} +  𝛽2,𝜏𝐼{𝑥𝑖𝑗 ≥ 𝑡𝜏})(𝑥𝑖𝑗 − 𝑡𝜏) + 𝑠𝑖𝑗
𝑇 𝛾𝜏 + 𝑧𝑖𝑗

𝑇 𝑈𝑖 + 𝜀𝜏,𝑖𝑗,                   (6) 

for 𝑗 = 1,2,3,4,5,   𝑖 = 1, … … . , 𝑛.                                                                                           

The goal is to estimate the fixed effects parameters β, and the location of the change point for a 

grid of percentiles p ={0.25, 0.50, 0.75}.   

3.1. Simulation setting 

The variable 𝑥𝑖𝑗 is simulated from the normal distribution with a mean of 5 and a standard 

deviation of 2. We simulated a 5 × 4 design matrix 𝑠𝑖𝑗  for the fixed effects 𝛾𝜏, where the first 

column corresponds to the intercept, the second column represent group variable that is the 

subjects are randomized on two groups. The third column represents a variable follows uniform 

distribution on (0,1). The fourth column represents a variable follows normal distribution with a 

mean of 3 and a standard deviation of 1. The matrix 𝑧𝑖𝑗, that is associated with the random effects, 

is subset from matrix 𝑠𝑖𝑗 with 3 columns which are the intercept and columns number 3 and 4 in 

matrix 𝑠𝑖𝑗.   

        The fixed effects parameters were chosen as 𝛾1 = 5.5, 𝛾2 = 4 and 𝛾3 = 2, 𝛾4 = 3.  The location 

of the change point is fixed at 4.8,  𝛽1,𝜏=4, and 𝛽2,𝜏 = -5.  

      The error terms 𝜀𝜏,𝑖𝑗 are generated independently from two different distributions:  

1-  An ALD (0, σ, p), where p stands for respective percentile to be estimated, and σ = 1. This 

represents a symmetric distribution. 
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2-  A lognormal normal distribution with a mean of  0 and a variance 𝜎2= 1 . This represents 

a skewed distribution. 

The random effects 𝑈𝑖 is 3 × 1  vector that is generated from multivariate asymmetric 

Laplace distribution with a mean of 0 and a variance-covariance matrix Σ. The matrix Σ is chosen 

to follows AR(1) structure with 𝜌= 0.5 and 𝜎 = 0.8. This structure gives the better acceptance rate 

for the Metropolis-Hasting algorithm. 

       We use m=4 and n = 40 and 100. In addition, l= 20 (number of simulations), W = 500 (the 

number of Monte-Carlo iterations) and c = 0.2. Note, the choice of c depends on the dataset, and 

the underlying model. We generate 1000 data samples for each scenario. 

3.2. Simulation results 

     The convergence of the SAEM estimates is evaluated using the visual inspection via trace plot. 

Also, through monitoring the difference (relative difference) between two successive evaluations 

of the log-likelihood 𝑙(ω|Yi), given by ‖𝑙(ωs|Yi) −  𝑙(ωs+1|Yi)‖ or ‖
𝑙(ωs+1

|Yi)

𝑙(ωs
|Yi)

−

1‖  respectively.  

       Figures (1)  and (2) display samples from the trace plots of the estimates for n=40 and n=100, 

respectively. Figure (3) displays the visual monitoring of the relative difference between two 

successive evaluations of the log-likelihoods. Assume that the first100 iterations (which is 20% of 

W), as burn-in period, it is clear that all the estimates converge.  

 
Figure (1): A Sample of the trace plot for the SAEM estimates (n= 40), 𝜀𝜏,𝑖𝑗~𝐴𝐿𝐷 
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Figure (2): A Sample of the trace plot for the SAEM estimates (n = 100), 𝜀𝜏,𝑖𝑗~𝐴𝐿𝐷 

 
Figure (3): Sample of visual monitoring the difference (relative difference) between two successive evaluations of 

the log-likelihood, 𝜀𝜏,𝑖𝑗~𝐴𝐿𝐷 

 

     For all scenarios, the absolute relative bias (ARB) for each parameter over the 1000 replicates 

is obtained as:  
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ARB =  |
estimated value−true value

true value 
|, 

and the standard error of each estimator is obtained as: 

𝑆𝐸 ̂ (𝜃) = √
1

𝐾
∑ (𝜃𝑘 −  𝜃∗

1000

𝑘=1

)2, 

where 𝜃𝑘 is the Kth estimate of  θ using the Kth sample and 𝜃∗  is the average of the multiple 

estimates. That is, 

𝜃∗ =
∑ 𝜃𝑘

𝑘
𝑘=1

𝑘
  

 

 

 

Table (1): Simulation results, the standard errors, and the relative bias of different models at n=40,100, 𝜀𝜏,𝑖𝑗~𝐴𝐿𝐷 

  n=40, c=0.2 n=100, c=0.2 
  Proposed Method Li.et al. (2015) Proposed Method Li.et al. (2015) 

Distribution parameter 
Relative 

bias% 
S.E 

Relative 

bias% 
S.E 

Relative 

bias% 
S.E 

Relative 

bias% 
S.E 

𝜏 = 0.25 

γ0 0.077 0.043 0.142 0.052 0.084 0.053 0.115 0.115 

γ1 0.053 0.027 0.041 0.026 0.032 0.039 0.036 0.036 

γ2 0.181 0.035 0.274 0.043 0.130 0.044 0.058 0.058 

γ3 0.024 0.011 0.086 0.012 0.003 0.010 0.000 0.000 

Β1 0.008 0.008 0.005 0.010 0.012 0.012 0.022 0.022 

Β2 0.040 0.009 0.045 0.009 0.016 0.012 0.030 0.030 

Change point 0.093 0.022 0.089 0.025 0.015 0.029 0.026 0.026 

σ 0.322 0.019   0.375 0.024   

AIC 11603.900 11604.880 29134.340 29136.100 

𝜏 = 0.5 

γ0 0.121 0.165 0.142 0.188 0.078 0.043 0.122 0.052 

γ1 0.299 0.117 0.041 0.146 0.028 0.027 0.058 0.026 

γ2 0.389 0.125 0.274 0.177 0.065 0.035 0.032 0.043 

γ3 0.120 0.045 0.086 0.056 0.021 0.011 0.025 0.012 

Β1 0.058 0.029 0.005 0.039 0.025 0.008 0.031 0.010 

Β2 0.003 0.048 0.045 0.054 0.021 0.009 0.023 0.009 

Change point 0.006 0.088 0.089 0.110 0.006 0.022 0.015 0.025 

σ 0.140 0.075  
 0.124 0.019   

AIC 11619.340 11620.040 29065.320 29066.240 

𝜏 = 0.75 

γ0 0.008 0.152 0.045 0.167 0.103 0.070 0.104 0.083 

γ1 0.016 0.151 0.139 0.176 0.043 0.039 0.030 0.041 

γ2 0.039 0.101 0.395 0.113 0.037 0.043 0.117 0.051 

γ3 0.005 0.033 0.007 0.039 0.113 0.014 0.134 0.015 

Β1 0.033 0.035 0.037 0.040 0.019 0.014 0.010 0.019 

Β2 0.064 0.039 0.105 0.048 0.007 0.013 0.013 0.014 

Change point 0.011 0.085 0.017 0.097 0.000 0.032 0.000 0.000 

σ 0.354 0.074  
 0.398 0.026   

AIC 11663.790 11664.600 29164.130 29166.860 
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Table (2): Simulation results, the standard errors, and the relative bias for different models at n=40,100, 

𝜀𝜏,𝑖𝑗~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 

  n=40, c=0.2 n=100, c=0.2 
  Proposed Method Li.et al. method Proposed Method Li.et al. method 

Distribution parameter 
Relative 

bias% 
S.E 

Relative 

bias% 
S.E 

Relative 

bias% 
S.E 

Relative 

bias% 
S.E 

𝜏 = 0.25 

γ0 0.092 0.141 0.106 0.187 0.017 0.055 0.101 0.082 

γ1 0.167 0.083 0.198 0.103 0.102 0.058 0.089 0.064 

γ2 0.127 0.054 0.241 0.079 0.042 0.036 0.015 0.054 

γ3 0.043 0.028 0.041 0.035 0.098 0.009 0.151 0.012 

Β1 0.004 0.025 0.051 0.035 0.0007 0.011 0.035 0.022 

Β2 0.002 0.013 0.023 0.017 0.0001 0.009 0.006 0.018 

Change-point 0.0748 0.057 0.0741 0.076 0.0362 0.030 0.036 0.042 

σ 0.363 0.043   0.0811 0.025   

AIC 11647.47 11650.32 29150.83 29150.87 

𝜏 = 0.5 

γ0 0.204 0.131 0.267 0.137 0.029 0.060 0.033 0.070 

γ1 0.017 0.074 0.025 0.063 0.107 0.047 0.090 0.055 

γ2 0.078 0.071 0.126 0.103 0.009 0.025 0.157 0.039 

γ3 0.008 0.025 0.022 0.029 0.004 0.011 0.014 0.015 

Β1 0.001 0.022 0.0006 0.032 0.003 0.013 0.003 0.016 

Β2 0.012 0.010 0.025 0.015 0.005 0.008 0.004 0.011 

Change-point 0.077 0.056 0.072 0.063 0.038 0.027 0.036 0.034 

σ 0.1054 0.043  
 0.249 0.022   

AIC 11663.5 11665.6 29124.52 29125.03 

𝜏 = 0.75 

γ0 0.044 0.177 0.051 0.198 0.049 0.066 0.046 0.096 

γ1 0.039 0.107 0.045 0.107 0.153 0.052 0.174 0.062 

γ2 0.186 0.058 0.164 0.081 0.002 0.053 0.094 0.075 

γ3 0.061 0.02 0.072 0.033 0.143 0.014 0.121 0.021 

Β1 0.008 0.029 0.014 0.030 0.011 0.014 0.004 0.018 

Β2 0.007 0.018 0.014 0.242 0.005 0.011 0.002 0.016 

Change-point 0.024 0.068 0.026 0.115 0.036 0.035 0.042 0.048 

σ 0.011 0.050   0.103 0.030   

AIC 11653.44 11654.07 29130.44 29139.75 

 

Table (1) and Table (2) show the results of the simulations. We compare the performance of 

the proposed algorithm with the algorithm proposed by Li, et al. [7]. We can conclude the 

following: 

1. The proposed estimators are asymptotically unbiased for symetric and skewed distributions. 

This is because the relative bias of all estimates using the proposed algorithm is relatively small 

for both the ALD and the lognormal distributions. The result is valid for sample sizes = 40 and 

100. 

2. It is clear that the RAB associated with most of the parameter estimates, for the proposed 

algorithm, is less than those of the algorithm proposed by Li, et al. [7], when the errors follow 

ALD or lognormal distribution and sample sizes = 40, and 100. This mean that the proposed 

method is better than the algorithm proposed by Li, et al. [7]. 
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3. The proposed method is more efficient than the the algorithm proposed by  Li, et al. [7]. The 

standard errors of all estimators for the proposed algorithm is less than their counterparts of 

the algorithm proposed by Li, et al. [7]. 

4. All the AIC   values for  the proposed technique is less than that for the model estimaed by  Li, 

et al. [7].  This means that the proposed algorithm  outperforms the algorithm propsed by  Li, 

et al. [7]. 

4. Application: COVID-19   

The first diagnosed case of COVID-19 symptoms is dated back to December 2019 in Wuhan 

city, China. The COVID-19 affected the whole world, socially, economically, and even politically.  

There are more than 3 million deaths by the end of April 2021 as reported by the WHO. The factors 

that affect the spread of the disease, and the number of deaths, were under focus of many studies.   

Studies have shown that the environmental factors, in general, may affect the fast spread of the 

COVID-19. Also, studies tried to investigate the impact of economic factors on the virus 

transmission. A study on some Chinese cities during the period January, the 19th and February, 

the 29th of year 2020 revealed that higher developed cities have high transmission rates. This may 

be due to the high economic activity that needs high social interactions [22].  

The effect of demographic factors on spread of COVID-19 was studied. Khan, et al. [23] 

demonstrate that certain demographic attributes, such as the age distribution, the poverty ratio, the 

female smoker’s percentage, the obesity level, and the average annual temperature of the country, 

are significantly associated with COVID-19 death rate distribution.  

 

 
Figure (4): Histogram of the monthly new deaths per million 

 

In this article we focus on global economic factors and health factors affecting monthly death 

rate per million of COVID-19, to describe the spread and fatality of COVID-19 disease. We 

investigate whether there is a threshold effect (change-point) in the relationship between the HDI 

and new monthly deaths per million.  From Figure (4) we can conclude that the new deaths per 
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million is skewed to the right. So, we need to focus on the factors that affect the lower and/or upper 

tails of the distribution of the new deaths. However, most of the proposed statistical methodology 

for describing longitudinal data with change point rely upon distributional assumptions that is not 

hold in this case.   

4.1. Data 

The used data about the COVID-19 new deaths were obtained from the Our World In Data 

online (https://ourworldindata.org/coronavirus) publication. This cite has become one of the world 

leading websites during the pandemic in 2020. The study focuses on the monthly data during the 

period starting from the 1st of April 2020 till the 31st of April 2021.  The dependent variable is 

the new monthly deaths per million, while the independent variables are  

1- ICU: the monthly number of COVID-19 patients in intensive care units (ICUs) on a given 

day per million. 

2- Number of tests: the monthly tests conducted per new confirmed case of COVID-19. 

3- Diabetes prevalence: Diabetes prevalence (% of population aged 20 to 79) in 2017. 

4- Hospital beds: The number of hospital beds per 1,000 people, most recent year available 

since 2010. 

5- Median age: The median age of the population; UN projection for 2020. 

6- Stringency index (SI): The government response stringency index; it is a composite 

measure based on 9 response indicators including school closures, workplace closures, and 

travel bans, rescaled to a value from 0 to 100 (100  is the strictest response). 

7- HDI: A composite index measuring average achievement in three basic dimensions of 

human development; a long and healthy life, knowledge and a decent standard of living. 

values for 2019.  It ranges from 0 to1 in which 1 indicate higher development countries in 

the 3 aspects. 

The 30 countries incorporated in the study are: 

Austria Bangladesh Brazil Bulgaria Canada China Colombia Denmark 

Djibouti Dominican  Egypt Ethiopia Ghana  Greece  Hungary India 

Iraq Ireland  Italy Jordan  Kenya Morocco Portugal Russia  

Spain Sweden Tunisia Turkey UK USA   

 

     These countries are chosen to represent different area of the world, and according to the 

availability of the data. It is well mentioning that there are some countries suffers from missing 

data specially in the variables monthly number of COVID-19 patients in intensive care units 

(ICUs), and monthly tests conducted per new confirmed case of COVID-19. These values are 

imputed using regression method. The variables that will be associated to the random effects are 

stringency index (SI), diabetes prevalence and median age in addition to the intercept. 

      Table (3) presents the descriptive statistics of the variables in the study. Figure (5) presents the 

profile plot of the death rate for all countries over time. 

Table (3): Descriptive Statistics of COVID-19 Data  
Minimum Maximum Mean Std. Deviation 

new monthly deaths per million 0 704 72 107 
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ICU 1 5882 1018 1217 

Number of tests 83 33120 1906 3009 

Diabetes prevalence 3 17 7 3 

Hospital beds 0 8 3 2 

Median age 20 48 35 9 

SI 25 99 66 15 

HDI .485 .955 .79267 .128355 

 
Figure (5): Spaghetti plot of new monthly deaths per million 

4.2. Data analysis and results 

      The aim of this study is to know the global economic and health factors affecting monthly 

death rate per million due to COVID-19. Figure (6) shows a scatter plot of the relationship between 

the HDI and the new deaths per million. From Figure (6), we can see that that there is a suspicion 

of having a threshold effect in relationship between the HDI and the new monthly deaths per 

million. This is obvious especially for mean regression and 0.8th quantile regression. Hence, the 

location of the change point may be at HDI between 0.7 and 0.8. This leads us to estimate the 

mixed effect quantile regression with change point at 0.5th quantile and at 0.8th quantile. 

 

Figure (6): Scatter plot between HDI and monthly new deaths. 
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Table (4): Estimation of the mixed effects quantile change point regression model for COVID-19 data 

    
Coefficient tau= 0.5 tau= 0.8   

estimate 95% CI estimate 95% CI 

Intercept γ0 -346.03 -358.571 -284.866 -842.653 -855.085 -828.045 

ICU γ1 0.0302 0.026 0.031 0.105 0.100904 0.113117 

Number of tests γ2 -0.0062 -0.0066 -0.004 -0.007 -0.00767 -0.00511 

SI γ3 0.2042 -0.138 0.261 0.462 -0.10951 0.567555 

Diabetes Prevalence γ4 -0.0943 -1.795 0.868 -1.842 -2.24477 1.615969 

Hospital beds γ 5 -0.3533 -4.566 0.453 0.811 -4.10941 3.664168 

Median age γ6 -1.2929 -2.035 -0.848 -5.640 -6.26093 -4.95497 

HDI Β1 459.41 438.673 468.887 1414.293 1408.687 1419.164 

Β2 128.68 128.622 128.677 -122.954 -128.65 -116.955 

Change point 0.79 0.783 0.842 0.816 0.813 0.817 

 

     The proposed method was implemented at the quantiles 𝜏 = 0.5 and 𝜏 = 0.8 to test whether the 

HDI had any threshold effect on the monthly new deaths per million. The following model is fitted   

𝑀𝐷𝑅 =  𝛼𝜏 + (𝛽1,𝜏𝐼{𝑥𝑖𝑗 ≤ 𝑡𝜏} +  𝛽2,𝜏𝐼{𝑥𝑖𝑗 ≥ 𝑡𝜏})(𝑥𝑖𝑗 − 𝑡𝜏) + 𝑠𝑖𝑗
𝑇 𝛾𝜏 + 𝑧𝑖𝑗

𝑇 𝑈𝑖 + 𝜀𝜏,𝑖𝑗 ,

𝑗 = 1,2,3, . . ,13   𝑖 = 1, … … . ,30 

where 𝑥𝑖𝑗 is the HDI,  𝑠𝑖𝑗
𝑇 , is a vector containing the observation of the following variables: ICU, 

number of tests, diabetes prevalence, hospital beds, median age, stringency index (SI). The 𝑧𝑖𝑗
𝑇  

is a vector containing one’s to represent the intercept, stringency index (SI), diabetes prevalence 

and median age. The estimates of the fixed effect of the model, and the location of change point at 

𝜏 = 0.5, using the proposed algorithm and the algorithm of Li, et. al. [7] are summarized in Table 

(4). Also, the 95% confidence interval are obtained using block bootstrap method with number of 

replications equals 1000.  From Table (4), depending on the confidence intervals, it is clear that 

there is a threshold effect in relationship between the HDI and the new monthly deaths per million 

at HDI = 0.79 and 0.816, respectively. The effect of the HDI on the 0.5th quantile of new monthly 

deaths per million due to COVID-19 is 482.41 where this effect declines after the location of the 

threshold to 108.48. Both effects are significant at 95% confidence. But for 0.8th quantile we found 

that, prior the threshold value, the effect of the HDI on the 0.8th quantile of new monthly deaths 

per million due to COVID-19 is 1414.293. This effect declines and has a negative value (-122.95) 

after the location of the threshold.  This means that increasing the HDI affect the 0.5th quantile of 

new monthly deaths per million due to COVID-19 positively, before and after the threshold value. 

However, it affects the 0.8th quantile of new monthly deaths per million due to COVID-19 before 

the threshold value positively and after the threshold value negatively.   

Also we can see that there is a positive effect of monthly number of COVID-19 patients in 

intensive care units (ICUs) for both 0.5th quantile and 0.8th quantile of new monthly deaths per 

million. This effect is greater in case of 0.8th quantile. There is negative effect of each of number 
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of tests, and median age of the population on both of 0.5th quantile and 0.8th quantile  of new 

monthly deaths per million. However, their effect is greater in case of 0.8th quantile. Each of the 

stringency index, hospital beds and diabetes prevalence have no significant effect on both of 0.5th 

quantile and 0.8th quantile of new monthly deaths per million due to COVID-19 .  

Table (5): AIC values of the two models for COVID-19 data 

 Proposed Method Li-et al. (2015) method 

tau= 0.5 

tau= 0.8 

24679.4 24690.74 

11109.59 11121.28 

 

Table (5) presents the AIC values for the proposed model and the Li, et. al [7] model at τ =0.5 and 

0.8. The results show that the proposed model perform better than  the model of Li, et al. [7]. 

5. Conclusion  

In this  article we propose a mixed effect quantile regression with a change point model for 

longitudinal data by relaxing the independence assumption. The mixed effects are used to capture 

the dependence structure of the longitudinal data. We use stochastic approximation EM algorithm 

to estimate the parameters using the link between asymptotic Laplace distribution and the quantile 

regression. In addition, the location of the change point is estimated using the optimization 

methods.  Simulation studies are conducted to evaluate the proposed techniques. The simulation 

results show that the proposed techniques are better than those of Li, et al. [7], in terms of the 

relative biases and the standard errors, for symmetric and skewed distributions.   

The proposed techniques are applied to a real data about COVID-19. We found that there is a 

threshold effect in the relationship between the HDI and the 0.5th quantile and, 0.8th quantile of  

new monthly deaths per million.  Also, the results show a positive effect of monthly number of 

COVID-19 patients in intensive care units (ICUs) for both the 0.5th quantile and the 0.8th quantile 

of new monthly deaths per million.  There is a negative effect of each of the number of COVID-

19 tests and the median age of the population on both the 0.5th quantile and the 0.8th quantile  of 

new monthly deaths per million. The stringency index, hospital beds and diabetes prevalence have 

no significant effect on both the 0.5th quantile and the 0.8th quantile of new monthly deaths per 

million.  

The proposed techniques are for complete longitudinal data and one change point. A new venue 

for future research is to extend the proposed techniques for longitudinal data with missing values. 

Another future research point is to modify the proposed methods to accommodate multiple change 

points. These points are under consideration of the researchers.  
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