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Abstract

This paper explores the possibility of improving the predictability of financial returns via a decomposition method called

“External trend and internal componenets analysis”. Using some Chinese and American stock market, it approves that

the method enhance predictability
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Abstract

Accurately predicting stock market returns can pay off economically not by yield-
ing significant profit, but rather by preventing the loss of a large sum of money.
Therefore, stocks with a high degree of predictability gain more attention. This
study is intended to investigate the impact of decomposing returns on improving
predictability. The decomposition method is used to separate the return local
components from the external trend. The approximate entropy technique is ap-
plied to quantify their randomness amounts. The results reveal that the decompo-
sition method improved the predictability of returns from S&P500, Nasdaq 100,
SSE and SZSE 500 stocks. The outcomes show that using stock absolute value
can further enhance its performance. Moreover, this study shows that S&P500
intraday data are more predictable than their daily data. These findings propose
incorporating the decomposition method in the prediction process to improve the
predictability to maximise the investors profit and minimise their risk.

Keywords: Stock market; Returns; Predictability; Decomposition method; Ap-
proximate entropy.
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1 Introduction

Stock market management has been gaining importance in the past several years;

however, the researcher mainly focused on return forecasting and volatility (Ra-

pach and Zhou, 2013; Pan et al., 2020; Sun and Yu, 2020). In financial economics,

the efficient market hypothesis states that future prices can not be predicted based

on past prices (Malkiel, 2003). This concept has been continually disapproved in

different ways since the 1980s (Lee and Lee, 2009; Rossi and Gunardi, 2018).

The dwindling of support among researchers for it was encouraging to explore the

stock’s returns structure. Moreover, economists lack a fundamental theory behind

their complex behavior. By analysing the relationships between the agents using

different tools, many studies have been done to extract meaningful information.

Researchers generally focused on understanding their correlations for both daily

(Forbes and Rigobon, 2002) and intraday time scales (Münnix et al., 2010).

The network theory is a tool used to characterise and classify the different

financial instruments’ interdependence (Mantegna, 1991). Several methods have

been developed to include the non-linearity of stock return’s dynamic analysis

(Fiedor, 2014c). Most of the analyses use synchronous correlations of equity

returns. They have shown a common factor that drives returns, and stocks them-

selves are arranged in groups (Fiedor, 2014b). Kausik (Chaudhuri, 1997) has

found evidence of a single stock market’s common trend by an emperical investi-

gation. Therefore, many studies proposed models for its prediction (Yiwen et al.,

2000; Wen et al., 2019). Separating the market’s global trend from the local effects

for stock markets has been a crucial problem. It allows distinguishing whether

the stocks are just following the common trend or, on the opposite, they are the
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source of their fluctuations.

Analysing stock markets from the point of predictability has attracted many

researcher’s attention. Scholars focus on testing return predictability for different

stock markets (Chen et al., 2010; Lanne, 2002; Bannigidadmath and Narayan,

2016) or examining the robustness of the evidence on stock return predictabil-

ity (Pesaran and Timmermann, 1995; Campbell and Yogo, 2006; Kostakis et al.,

2015). A significant number of these studies used the approximate entropy to anal-

yse financial time series (Darbellay and Wuertz, 2000; Assaf et al., 2021). Because

of its suitability for characterising them (Pincus and Kalman, 2004) and its use-

fulness in quantifying the market’s efficiency in stock and foreign exchange(Risso,

2008, 2009; Zunino et al., 2009; Oh et al., 2007). Entropy is a technique that bor-

rowed its concept from mechanics and information theory (Jaynes, 1965; Shannon,

1948), where estimations are affected by the system noise since it requires infinite

data series. With simple computations based on the repetitive patterns of time

series fluctuations, the approximate entropy method proposed by (Pincus, 1991;

Pincus and Huang, 1992) is used to address this problem. To the authors’ best

knowledge, few publications are available in the literature discussing improving

returns predictability. However, studies aimed to enhance the predictability de-

gree are needed to be done.

This paper explores the possibility of improving the predictability of financial

returns. Unlike previous studies exploring the relationship between their statis-

tical properties and predictability (Duan and Stanley, 2011; Pan et al., 2005),

it uses the separation of the local effects from the global trend imposed by the
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market. The decomposition method based on the independent component anal-

ysis approach evaluates the efficiency of local market policies. It offers a better

understanding of the system dynamic and hence improves the returns directional

prediction correctness. The results show that returns predictability degree after

decomposition has been improved. Incorporating the return’s absolute value in

the process can enhance its performance. Moreover, this study examines the im-

pact of frequency on predictability and find out that high-frequency data are more

predictable than daily data.

The remainder of the paper is organised as follows: Section 2 presents data

description and the methods and techniques utilised in the empirical analysis.

Section 3 discusses the empirical results. Finally, section 4 concludes this work.

2 Data and methodology

2.1 Data

This study is based on 4 stock indices from the USA and China to make the

results more convincing. The data has been downloaded from the Wind Financial

Terminal platform. Due to data constraints, the dataset for S&P500 (Standard

and Poor’s 500) and Nasdaq 100 (National Association of Securities Dealers Au-

tomated Quotations) extends from January 5, 2010, to May 28, 2019 (389 and 89

stocks), while for SSE Index (Shanghai Stock Exchange) and SZSE 500 compos-

ite index (Shenzhen Stock Exchange) covers the period from January 4, 2000, to

May 28, 2019 (315 and 245 stocks). This study used 1-minute data to investigate

the impact of frequency on predictability for the same stocks listed on S&P500.
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1-minuite data cover the period from March 27, 2019 to April 5, 2019 due to

consistency and availability of all stocks that will help compare them.

The decomposition method used in this study requires the following data

transformation:

ri(t) =
Pi(t)− Pi(t− 1)

Pi(t− 1)
∗ 100, (1)

where Pi(t) and Pi(t− 1) are the prices at the instants t and t-1, respectively.

2.2 Decomposition method

For a time series of returns ri(t), i = 1, ..., S and t = 1, ..., T , where i refers to

a specific stock, the existing methods for the separation of the internal from the

external contributions allow writing the time series in the following way:

ri(t) = rexti (t) + rinti (t), (2)

where rexti represents the impact of the market trend on the stock i and rinti sym-

bolise the contribution due to purely local factors.

Generally, these methods assume that the local components have a zero av-

erage. Under this assumption, Barabasi et al.(de Menezes and Barabási, 2004)

have proposed a method to separate the internal dynamics where the following

equation can compute the external components:

rexti (t) = ai

S∑
i=1

ri(t), (3)
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where

ai =

∑T
i=1 ri(t)∑T

i=1

∑S
i=1 ri(t)

, (4)

and

rinti = ri(t)− (

∑T
i=1 ri(t)∑T

i=1

∑S
i=1 ri(t)

)
S∑
i=1

ri(t). (5)

This method can forecast the correct outcome’s in specific cases, therefore,

Barthelemy et al.(Barthélemy et al., 2010) proposed the ETICA decomposition

method that is based on an independent component analysis approach (the ex-

ternal trend and internal components analysis). The context is essentially the

Arbitrage Pricing Theory (APT), in which rinti is the excessive α. The ai’s es-

timation is not conceptually different from the more established Fama-Macbeth

regression techniques widely used for factor extraction. The ETICA methodology

is an alternative approach to Fama-Macbeth within the APT context that adds

value from a finance perspective. Barabasi et al. (de Menezes and Barabási, 2004)

proposed the separation method, where the internal component rinti has a zero

average by definition. Its pricing implications yield the restriction that the ele-

ments of the parameter vector α are jointly equal to zero. However, the internal

contribution average is expected in many cases to be non-zero; hence this yields

incorrect results. The decomposition method assume the independence of the

global trend from internal contributions, which are required to be independent of

stock to another and the external components so can be written:

rexti (t) = aiw(t), (6)

where w(t) is the collective trend common to all stocks reacting to it with the
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prefactor ai, so the authors assumed:

ri(t) = aiw(t) + rinti (t). (7)

The parameter µw
σw

is estimated under two scenarios (the average of w(t) and

its dispersion). The first one assumes that in the absence of the internal contri-

butions:

µw
σw

=
1

S

∑
i

〈ri〉
ai
, (8)

where

〈ri〉 =
1

T

T∑
t=1

ri(t), (9)

or by an alternative assumption:

µw
σw

=
〈rav〉Ā
Ā2

, (10)

where rav = 1
S

∑
i ri and Ā = 1

S

∑
i(Ai). In this cases µw and σw can be fixed

to: µw = 〈rav〉 while, σw = 〈Wrav〉 (W (t) is the global normalized pattern). The

second scenario assumes the absence of correlation between Ai’s (Ai = aiσw) and

the temporal average of rinti ’s. Barthelemy used the second scenario to estimate µw
σw

since the assumption of the absence of the internal contribution leads to incorrect

results (Barthélemy et al., 2010). The parameter µw
σw

is estimated by the slope of

an observed linear correlation obtained from the following equation:

〈ri〉 = Ai
µw
σw

+ 〈rinti 〉. (11)

To consider the case of having a strong correlation (negatively and positively)
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we propose the following new approach:

corr(Ai, 〈rinti 〉) = ±1, (12)

means by definition that there exist a, and b such as:

〈rinti 〉 = aAi + b, (13)

by replacing 〈rinti 〉 in the equation (11), we get:

〈ri〉 = (
µw
σw

+ a)Ai + b. (14)

In the absence of any condition about a and µw
σw

, we can’t separate them from

each other [we can get (µwσw + a) with a linear regression]. Therefore, to express

that the correlation is equal to ±1, and assume that:

Ai = ±〈rinti 〉, (15)

we get then

µw
σw

=
1

S

∑
i

(
〈ri〉
Ai
− 1)(corr = 1), (16)

and

µw
σw

=
1

S

∑
i

(
〈ri〉
Ai

+ 1)(corr = −1). (17)

After collecting the data, this study applied the ETICA method once its con-

ditions mentioned in Barthélemy et al. (2010) are satisfied. To check the effect of

the µw
σw

on the results, it considered the equations (10), (15), and (16) and com-

pared the results obtained for different values. Table 1 summarises the intervals
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for the parameter µw
σw

.

Table 1: Intervals for the parameter µw
σw

/ S&P 500 NASDAQ 100 SSE SZSE 500

corr=1 -0.9369 -0.8638 -0.7886 -1.2919

corr=0 0.0124 0.0473 0.0193 -0.0295

corr=-1 1.0631 1.1362 1.2114 0.7081
Using stocks from S&P 500(daily data), NASDAQ 100(3 days data), SSE(weekly data) and

SZSE(monthly data) indices when the correlation between rint
i and Ai is equal to -1, 0 and 1.

This paper extended the external trend and internal components analysis de-

composition method algorithm and applied it to |ri(t)| instead of ri(t) to enhance

the predictability. It is very important and useful since many studies have sug-

gested that signs of returns are predictable (Chronopoulos et al., 2018).

2.3 Approximate entropy

The algorithm of Kolmogorov–Sinai entropy has been shown to work well for real

dynamic systems, but even a small amount of noise makes it fail in analysing

the system’s complexity successfully (Delgado-Bonal and Marshak, 2019). To

quantify the concept of changing complexity, Pincus, in 1991, developed a new

statistic for the experimental data series called ”Approximate Entropy” (Pincus,

1991). The study concluded that the application of the K-S entropy was incorrect

in some cases, such as the presence of stochastic components.

To solve the K-S entropy limitation, he formulated the approximate entropy

(ApEn) with the same philosophy. The independence of the ApEn of any model

makes it suitable for a different kind of data analysis (Delgado-Bonal and Mar-

shak, 2019). Therefore, it is applicable without any assumption about data. This

9



is why it is extensively used in different fields. As an input, the ApEn required

the pair parameter m, the embedding dimension (a non-negative integer), and the

noise filter r (positive real number).

Given a time series ri = ri(1), ri(2), ..., ri(T ) of length T, he defined the blocks:

ri(j) = ri(j), ri(j + 1), ..., ri(j +m− 1), (18)

and

ri(k) = ri(k), ri(k + 1), ..., ri(k +m− 1), (19)

the distance between them is:

d[ri(j), ri(k)] = maxl=1,2,...,m(|ri(j + l − 1)− ri(k + l − 1)|), (20)

By letting the value of Cmj calculating the number of blocks (with length =m)

similar to a given block, consecutive values be equal to:

Cmj =
d[ri(j), ri(k)] ≤ r

T −m+ 1
, (21)

The approximate entropy is calculated by:

ApEn(m, r, T )(ri) = φm(r)− φm+1(r), (22)

Where

φm(r) =
1

T −m+ 1

T−m+1∑
i

logCmi (r). (23)

where parameters m and r can be fixed to recommended values. Even the method

necessitated data between 10m and 30m. It could be applied to data where T=100
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(Pincus, 1995; Pincus and Huang, 1992).

According to Pincus (Pincus, 2008), approximate entropy’ properties can bet-

ter analyse the financial time series than other entropy measures. Therefore, this

study used it to quantify the original time series’s predictability degree, represent-

ing the return rates of different stock markets with different time scales. Then

compared the results with the ones we obtained using both rinti (t) and rexti (t).

The ApEn parameter r has been fixed to a recommended value equal to 0.2*

standard deviation of the series of data under analysis (literature considered it a

standard value (Chou, 2014)). In contrast, the embedding dimension is fixed to

a widely validate value m=2 Pincus (2008).

3 Empirical results

The external trend and internal component analysis decomposition method have

some conditions assumed for the data. This study used only the stocks that

fulfilled the following:

• Internal fluctuations and the global trend are statistically independent.

• From stock to stock, correlations between the local fluctuations are negligi-

ble.

After decomposition, one of the most important conditions is that the prefac-

tor ai does not vary over time. Its stability has been checked and confirmed for all

the stock used in this study (µ = 1 is the harmless choice to make as it has been

mentioned in (Barthélemy et al., 2010)). Once this condition is fulfilled, the ap-

proximate entropy technique has been applied to different quantities. The results

were compared to determine whether rinti (t) and rexti (t) have smaller approximate
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entropy values than ri(t). In this study, the ApEn of the S&P 500 daily stocks

were calculated using 3 different parameter values from Table 1. The results were

similar for the three different values, which means that the predictability is inde-

pendent of this parameter.
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Figure 1: Kernel density for S&P500 daily entropy rates (ApEn).

Figure 1 presents the kernel density of ApEn rate estimates for both ri(t) (solid

line) and rinti (t) (dashes line). It can be seen that generally, the entropy rates of

the rinti (t) are lower than ri(t)’s entropy rates, which means that they are more

predictable. These values are calculated using different embedding dimensions to

explore the impact of m parameter choice ( m=2 or 3 because higher embedding

dimensions are rarely used in practice). As shown in Table 2, rinti (t)and rexti (t)

have smaller approximate entropy estimated averages than ri(t). From this, it can

be concluded that both of the quantities rinti (t)and rexti (t) are more predictable

than ri(t). Additionally, the embedding dimension m affects on the results (ApEn

values have slightly changed in Table 2).

As stated earlier, ApEn is applied to data from NASDAQ 100, SSE and SZSE

12



Table 2: Estimated ApEn averages for different embedding dimension

/ m=2 m=3

ri(t) 1.63 1.08

rinti (t) 1.60 1.07

rexti (t) 1.61 0.94

500 composite indices, respectively (m=2, r=0.2). Figure 2 represents some of

their kernel densities and table 3 shows the estimated averages.

Table 3: Estimated ApEn averages of data from Nasdaq 100(3 days data),
SSE(weekly data) and SZSE composite(monthly data).

/ SSE NASDAQ 100 SZSE 500

ri(t) 1.56 1.36 0.58

rinti (t) 1.55 1.34 0.56

As shown in Table 3, the approximate entropy averages of rinti (t) are smaller

than ri(t). Figure 2 shows the entropy rates of the rinti (t) are lower than ri(t)’s

entropy rates. From these table and figure, it can be concluded that predictability

degree of internal components has improved.

It has been mentioned above that the ai’s are stable, which means that each

stock reacts in the same way to the common collective trend w(t) over time.

Therefore, it is reasonable to obtain equal approximate entropy values for the ex-

ternal parts of all the stocks belonging to the same stock market. Their estimated

averages for the same stock market indices mentioned earlier are equal to 1.54,

1.27 and 0.38, respectively smaller than 1.56, 1.36 and 0.58(estimated averages

of ri(t)’s rates). Based on these results showing that both rinti (t) and rexti (t) are

more predictable than ri(t), it is possible to conclude that decomposing financial
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Figure 2: Kernel density for weekly and monthly entropy rates of SSE index and
SZSE 500 composite indices, respectively.

time series via ETICA is effective to decrease the ApEn, hence improve the pre-

dictability degree.

The mix in empirical evidence of returns predictability suggested in many

studies that it is better to predict their sign instead. Diebold and Christoffersen

have developed this area in their theoretical work (Christoffersen and Diebold,

2006) and demonstrated that returns’ sign is predictable. Their model has been

extended to offer investors the highest gains (Chronopoulos et al., 2018). There-

fore, this study considered the consequences of decomposing the absolute value of

returns instead of the returns. The ETICA has been applied to |ri(t)| (to obtain

int abs and ext abs).
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Figure 3: Number of stocks having internal components approximate entropy
smaller than the approximate entropy of the returns.

Figures 3 and 4 show the number of stocks having improved predictability

after decomposing ri(t) and |ri(t)| (for both internal and external components).

The data are daily, 3-days, weekly, and monthly from S&P 500, NASDAQ 100,

SSE and SZSE 500 composite indices. As it can be seen from these histograms,

the number of stocks has always augmented in the case of decomposing |ri(t)|

instead of ri(t). Hence, utilising the absolute value of returns has enhanced the

decomposition performance in predictability improvement. Moreover, using the

absolute value of ri(t) has affected the number of stocks and improves the pre-

dictability of it.

This article analysed the data frequency impact on predictability. The ApEn

estimated average of minute data from the S&P 500 index were compared with the
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Figure 4: Number of stocks having external components approximate entropy
smaller than the approximate entropy of the returns

daily averages. The estimated minute data average is recorded as 1.27(m=2) and

0.95(m=3), while the daily averages are 1.63(m=2) and 1.08(m=3). The intraday

averages are smaller, which means that they are more predictable than daily data,

consistent with the empirical findings of Fiedor for the NYSE 100 stocks (Fiedor,

2014a).

4 Conclusion

This paper used the external trend and internal components analysis decomposi-

tion method to increase financial returns predictability. The outcomes show that

returns become more predictable after separating the local components from the

external trend. Furthermore, decomposing the returns absolute value instead of

16



returns can enhance its performance. This study examines the effect of frequency

on predictability. The results show that intraday data are more predictable than

daily data. The findings can guide studies dealing with forecasting models to

improve the returns directional prediction correctness.
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