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Abstract

Considerable interest lies in the growth in educational achievement that occurs over the course of a child’s schooling. This

paper demonstrates a simple but effective approach for the comparison of growth rates, drawing on a method first proposed

some 80 years ago and applying it to data from the Australian National Assessment Program. The methodology involves the

derivation of a ‘meta-metre’ – a quantitative mode of variation in growth – which permits comparison between groups defined by

time-invariant characteristics. Emphasis is placed upon the novel characteristics of the method and the valuable information it

can provide. Unlike complex modeling procedures, the approach provides a parsimonious, easily-interpretable model of growth.
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Abstract 

Considerable interest lies in the growth in educational achievement that occurs over 

the course of a child’s schooling. This paper demonstrates a simple but effective approach for 

the comparison of growth rates, drawing on a method first proposed some 80 years ago and 

applying it to data from the Australian National Assessment Program. The methodology 

involves the derivation of a ‘meta-metre’ – a quantitative mode of variation in growth – 

which permits comparison between groups defined by time-invariant characteristics. 

Emphasis is placed upon the novel characteristics of the method and the valuable information 

it can provide. Unlike complex modeling procedures, the approach provides a parsimonious, 

easily-interpretable model of growth, appropriate for a specific set of applications. 
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Introduction 

Recent Australian government, public policy and academic recommendations have 

highlighted the need to measure student achievement over the course of schooling, rather than 

concentrating on a specific timepoint (e.g., Gonski et al., 2018; Goss, Emslie, & Sonnemann, 

2018; Masters, 2020; McGaw, Louden, & Wyatt-Smith, 2020). 

Within the Australian educational landscape, the focus of school-age reporting of 

achievement has traditionally centred on performance at a single timepoint as measured by 

the National Assessment Program – Literacy and Numeracy (NAPLAN; Gonski et al., 2018). 

While such approaches provide meaningful information on educational achievement relative 

to the population, they fail to address variation in the level of growth for students with 

differing levels of academic aptitude. They also mask the extent to which student proficiency 

increases relative to previous performance, particularly for students entering school with low 

levels of literacy and numeracy. Interest thus lies in a shift away from static measures to a 

focus on achievement over the course of a child’s schooling. Such views are highlighted in 

several recent reports (e.g., Goss et al., 2018; Masters, 2020; McGaw, Louden, & Wyatt-

Smith, 2020) and emphasise a need to focus on variation in levels of achievement in early 

years of schooling and the subsequent progress that takes place over time – features 

respectively referred to as a student’s ‘initial status’ and ‘growth rate’.  

One area of interest raised by Masters (2020) is variability in growth between students 

from different backgrounds, with the possibility of increasing equity and inclusivity through 

targeted interventions. To implement such recommendations, methods appropriate for 

analysing growth between groups are required. Growth modelling approaches that 

accommodate varying starting points and trajectories, such as the RGM, are a logical 

consideration. 
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To effectively measure the rate of growth across schooling, appropriate methods are 

required. Growth-oriented methodological approaches accommodate varying starting points 

and trajectories but are often complex in their specification and interpretation (Curran, 

Obeidat, & Losardo, 2010). An alternative methodology, first proposed some 80 years ago, 

involves the derivation of “salient features of growth” (Rao, 1958, p.1). This paper 

demonstrates how the application of this approach to a set of longitudinal student assessment 

data can provide easily interpretable statistics that lend themselves to effective presentation of 

results. The approach provides valuable information regarding the overall trajectories of 

groups of students and demonstrates utility in the evaluation of achievement over time. 

The Rasch Growth Model (RGM) proposes a mechanism for evaluating differences in 

growth across a variety of phenomena (Olsen, 2003). One application for which this approach 

may be appropriate is in the modelling of achievement trajectories for school-age children, an 

area for which Rasch’s probabilistic models are most commonly associated (e.g., Rasch, 

1961). Since children’s literacy and numeracy abilities vary when they enter schooling and as 

a result of learning through schooling, it is feasible to measure and evaluate differences in 

these two features. To do so, one typically seeks to manifest a construct of interest through a 

set of assessment items (i.e., to elicit a behaviour which demonstrates the psychological 

phenomena, such as a performance of reading ability demonstrated through a reading test) 

and subsequently models the variation in change over time by applying a set of 

methodological approaches commonly referred to as growth modelling (Williamson, 2016). 

In doing so, the trajectories of achievement for individuals and groups may be compared.  

Higher levels of academic achievement and education are associated with well-

documented economic and social benefits, including individual and aggregate improvements 

in health outcomes (Grossman, 2006), civic engagement and social cohesion (Dee, 2004), and 
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distribution of income and earnings (Hanushek & Wößmann, 2007). Research points to 

educational advantages associated with the tailoring of pedagogical and policy-led 

interventions based on varying growth trajectories (Williamson, Fitzgerald & Stenner, 2014). 

As a result, monitoring achievement over the course of schooling plays an important role in 

informing both and educational and fiscal policy. 

The following paragraphs provide a summary of the interdisciplinary features of the 

RGM, its relationship to educational assessment and measurement, and its embedding within 

Rasch’s more widely recognised work. This approach is then described and applied, with the 

statistical and descriptive features of the model demonstrated using examples from 

NAPLAN. 

 

The Rasch Growth Model 

The RGM was first proposed by Georg Rasch in 1940 and subsequently articulated in 

a series of lectures presented at the 1951 meeting of the International Statistical Institute 

(Olsen, 2003). In both instances, Rasch’s focus was on the physiological growth of animals 

and an attempt to derive a “simple elementary growth law… [with] time expressed in the 

physiologically adequate unit of time” (Olsen, 2003, p.65). Rasch later applied the same 

methodology in the analysis of economic data, at which time he emphasised the key 

statistical features associated with the model (Rasch, 1972). In each application of the RGM, 

irrespective of the domain to which it was applied, the core feature lay in the capacity to 

derive the primary features of growth for the purpose of efficient comparisons between 

groups (Rao, 1958). 
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The RGM approach attempts to derive an estimated rate of growth for each 

individual, proportional to the increase over time for the population (Rao, 1958). Underlying 

this is an assumption that observations represent functional changes alongside a continuous 

variable, time. Methods of this type provide a parsimonious summary of individual 

differences (McArdle & Nesselroade, 2003). The RGM aims to identify the principal sources 

of variation in growth, which are conveniently expressed as a set of derived variables (Jolliffe 

& Cadima, 2016). Such an approach is consistent with time-ordered analyses that incorporate 

and acknowledge the role of both individual and group-level differences (Duncan & Duncan, 

1995). This has relevance within the context of evaluating differences in developmental 

trajectories, a point highlighted by Meredith and Tisak (1990) in their call for wider 

recognition of such procedures by both biological and behavioural researchers. 

 

Educational Assessment and Measurement 

Assessment and measurement act not only as a mechanism for obtaining results, but 

for further understanding the nature of development. Effective assessment development 

commences with an understanding of how an attribute will influence performance 

(Borsboom, Mellenbergh, & van Heerden, 2004). By focusing upon a variable of interest, 

quantification is considered appropriate in some contexts to the extent that it provides 

opportunities for generalisations to be made regarding underlying processes. For example, 

approaches that permit the inclusion of large or census samples, more defined criteria for 

differentiating performance (i.e., the use of multiple items and explicitly-defined rubrics), and 

a minimisation of construct-irrelevant variance, alongside a defined assessment framework, 

aid the determination of a clear construct definition. If one adheres to the notion of learning 

as a cumulative process, it can be inferred through the use of statistical techniques that 
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differing degrees of development can be represented as varying points along a continuum. 

Different locations on such a continuum can then be used to represent the quantitative, 

comparable abilities of those undergoing assessment, varying with respect to the measured 

variable. 

In an assessment context, tasks are required for test takers to demonstrate their ability 

in a specific area of inquiry. Assessments must permit the accurate measurement of variation 

in ability if they are to be considered valid (Borsboom et al., 2004). To achieve this, items are 

devised and selected to the degree that they represent the underlying construct (Andrich, 

1988). Variable construction is instantiated through the creation of test items that elicit 

evidence of the psychological phenomena (i.e., a demonstrated manifestation of the 

construct), which further assists in the development of the operational definition (Wright and 

Stone, 1979). The aim of the test development process is to devise and select a set of items 

suitable for elucidating variation in the degree of ability required from the measurement 

procedure, and to represent those differences as locations on a continuum. In effective test 

construction procedures, items are selected in a way that permits differentiation between the 

various levels of ability – that is, a test is composed of items appropriately targeted to the 

population of interest. When a person interacts with an item, the theoretical construct is made 

explicit through the manifestation of an observed response. Inferences can then be made 

regarding the level of ability exhibited in the set of responses provided (Bond & Fox, 2015). 

Ensuring an appropriate level of differentiation among test takers – based on the functional 

definition of the variable and the capacity of the items to manifest it – is an essential 

component of measurement in the social sciences (Andrich, 1988). 
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The Rasch Measurement Model 

 The Rasch Measurement Model (RMM) serves a comparative function in 

which data derived from a testing instrument (e.g., an assessment) can be compared to 

expectations set under fundamental principles of measurement (Andrich, 2004). These 

fundamental principles relate to the specific structure of relations between attributes and 

those relations being wholly attributable to the measurement act itself (i.e., not derived from 

other measures). Such properties permit a comparison in the degree of differences between 

two measures (i.e., additivity), but not in the ratio of them (i.e., multiplicativity). In this way, 

such relations may be considered similar to what Stevens (1946) described as ‘interval scale 

measurement’. Such features are common to the physical sciences (e.g., temperature as 

measured in Fahrenheit or Centigrade) and readily permit analysis using linear statistics. 

The RMM imposes a priori restrictions on both the model and parameters used to 

account for the observed structure of data (Andrich & Marais, 2019). In this way, a data set – 

the numerical summarisation of the qualitative aspects of a testing instrument – can be said to 

meet the requirements for measurement when it conforms to the structure specified by the 

RMM, thus permitting quantitative conclusions (Duncan, 1984). It may be argued that the 

methodology applies an approach consistent with that espoused by Kuhn (1977), in which the 

merit of the procedure lies not in appraising the appropriateness of a set of models to fit the 

data, but instead assessing whether observed data suitably represent features expected under 

fundamental measurement through evaluation of conformity with a pre-specified model.  

In the dichotomous RMM, the probability that a person will respond correctly to an 

item is dictated by the interaction between the person taking the test and the item used to 

measure the underlying construct. The person’s estimated level of ability determines the 

likelihood they will respond correctly to the item, given the item’s level of difficulty. This is 
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achieved by calculating the difference between ability and difficulty under certain algebraic 

constraints. Such an estimate of ability can be conceptualised as the individual’s location 

along a trait continuum, varying according to their capacity. 

A test conforming to the RMM can be used to ascertain an estimate of ability on a 

construct that is independent of the specific set of items used to make that assessment. This 

fundamental feature of the RMM – known as specific objectivity – states that the comparison 

of two people should be independent of the items used to assess them, and similarly that the 

comparison of two items should be independent of the individuals used for the comparison 

(Rasch, 1977). The algebraic separation of person and item parameters underlies this notion, 

ensuring that each parameter can be eliminated in its counterpart’s estimation. Interestingly, 

this same feature – consistent with requirements for objective measurement – is present 

within the RGM (Olsen, 2003). 

 

Measuring Growth in Educational Achievement 

 The RMM can be implemented to evaluate whether quantities under 

investigation conform to fundamental properties of measurement when growth trajectories 

are estimated (Williamson, 2017). By applying the RGM to valid and reliable measures of 

educational achievement that meet the requirements of the RMM, an attempt can be made to 

derive a set of summative parameters that characterise the growth trajectories of both 

individuals and groups. This is undertaken under the assumption that performances observed 

from psychometrically-sound measures of educational achievement represent functional 

changes associated with skill acquisition through structured learning (i.e., time spent at 

school). Such an assertion is consistent with developmental theories that posit an asymptotic 

decrease in the rate of educational achievement over time (Francis, Shaywitz, Stuebing, 
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Shaywitz, & Fletcher, 1996). However, like all approaches that are guided by substantive 

theory, proposed models require subjection to empirical evaluation through data analysis 

(Williamson, 2016).  

 

Aim, Objective and Research Question 

 This paper addresses the following question: Can Rasch’s Growth Model be 

used to measure differences in achievement trajectories by representing growth as a function 

of time? Meaningful application of the RGM will be demonstrated through the use of 

examples comparing the initial status and growth rates of groups defined by time-invariant 

characteristics, emphasising the valuable information about achievement trajectories that can 

be derived using this model. 

 

Methodology 

Data Sources 

 NAPLAN provides annual, point-in-time information regarding student 

achievement across a variety of domains at the level of the student, school, states and 

territories, and Australia as a whole. NAPLAN assessments are completed by students in 

grades three, five, seven and nine. The information collected as part of the program facilitates 

the monitoring and reporting of performance of specific groups and across states and 

territories – herein referred to as ‘jurisdictions’. While NAPLAN assesses performance across 

both primary and secondary education, the focus currently lies on reporting levels of 

achievement based on observations at a single timepoint, with limited supplementary 

reporting at two timepoints – between Grades three and five and between Grades seven and 
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nine (Australian Curriculum, Assessment and Reporting Authority, 2013). By adopting a 

longitudinal approach to data analysis that incorporates individual-level data measured across 

all timepoints, a more cogent understanding of educational achievement trajectories can be 

developed. 

 

Measures 

The measures of interest – student achievement in reading – took the form grade-

specific weighted-likelihood estimates (WLEs; Warm, 1989) of reading ability measured in 

logits, derived using the RMM (Australian Curriculum, Assessment and Reporting Authority, 

2020). This fulfilled the requirement stipulated by Williamson (2017) that fundamental 

properties of measurement be attributable to base quantities when growth trajectories are 

estimated. These estimates were equated onto the NAPLAN reporting scale, which became 

the unit of analysis. The NAPLAN reporting scale spans across all tested grades (i.e., Grades 

3, 5, 7 and 9) and is standardised using a mean of 500 and standard deviation of 100, with 

scores ranging from approximately 0 to 1000 (Australian Curriculum, Assessment and 

Reporting Authority, 2020). This process places reported results across assessment years 

(e.g., 2013, 2015, 2017, 2019) on the same scale, thus permitting comparability. 
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Data Preparation and Processing 

Prior to model implementation, data appropriate for longitudinal analysis was sourced 

and prepared. Separate data sets containing matched ‘gain’ data1 from the 2013, 2015, 2017 

and 2019 NAPLAN assessments were provided to the author for the purpose of data linkage 

and analysis. As current reporting and analysis techniques do not necessitate the linkage of 

student data across NAPLAN assessments, a considerable degree of variability exists in the 

consistency and use of common student identifiers. As a result, a small selection of the large 

number of variables pertaining to each student were used in the matching process. This was 

undertaken with the view to maximise the likelihood of a correct correspondence in 

assessment information included across timepoints. 

Data was first partitioned such that only cases from the appropriate grade and year 

were retained (i.e., only Grade 3 data was retained from the 2013 dataset, only Grade 5 data 

was retained from the 2015 dataset, etc.). The following variables were subsequently used in 

the matching process: 

- Student Identifier2; 

- Date of Birth; 

- School Identifier associated with the 2017 (Grade 7) and 2019 (Grade 9) dataset3; 

- Previous NAPLAN Reading score. 

 

 

1 ‘Gain’ data refers to a two-timepoint data set containing matched student information. These data sets 

contain information for students in all grades (i.e., three, five, seven and nine). 
2 There are no common controls in place for the establishment and allocation student identifiers used in 

NAPLAN assessments, which are managed by the jurisdiction in which the student sits the assessment. As a 

result, there are known issues in the sole use of student identifiers for the purposes of data linkage. 
3 Except in one jurisdiction, where Grade 7 students attend primary rather than high school, thus 

commonly attending a different school in Grade 9. 
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As the RGM requires complete data across all timepoints of interest, cases with 

missing data were removed. There was considerable variability in the number students with 

complete data across all four timepoints in each jurisdiction. To address these imbalances and 

potential privacy-related issues, a senate-weighted, random sampling procedure was then 

undertaken in which 1000 students from each jurisdiction with complete data were selected. 

Due to issues associated with data access and its linkage, data from one jurisdiction was 

excluded, resulting in a total of 7000 students being included in the analysis sample. 

Three time-invariant variables were selected for further analysis – jurisdiction, sex 

and Aboriginal and Torres Strait Islander identification (ATSI). Jurisdictional data was re-

categorised using an anonymised, numerical identifier. Sex data was categorically coded ‘1’ 

and ‘2’ as per the original data collection definitions (Australian Curriculum, Assessment and 

Reporting Authority, 2012), with the decision made to not elucidate the associated groups. 

The same data definitions (Australian Curriculum, Assessment and Reporting Authority, 

2012) differentiated students who identified as: 

- Aboriginal but not Torres Strait Islander origin; 

- Torres Strait Islander origin but not Aboriginal origin; or, 

- Both Aboriginal and Torres Strait Islander origin. 

Due to the small number of students identifying in the affirmative across these 

categories, the decision was made to collapse students across these groups into a single, 

binary-coded variable, ATSI. Students with missing data on either the ATSI or sex variables 

were excluded from further analysis. Comparisons were subsequently made of descriptive 

statistics for each of the variables relative to the 2019 ‘gain’ data set, with approximate 

equivalence found between the two datasets, as reported in  
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Table 1. Computation of the level of negative ‘gain’ – in which student progress 

decreases over the measures of interest – was also undertaken. During this process, 

distribution checks for concordance with assumptions of analysis of variance (ANOVA) – 

including normality of distributions as presented in the results section – were undertaken. 

Table 1 

Percentage of Students Belonging to Each of the Categorically Coded Time-invariant 

Variables of Interest 

Data Set 

% Sex 2 

(% Sex 1) 

% ATSI 

(% Not ATSI) 

2019 ‘Gain’ data (N = 859 0554) 49.8 (50.2) 5.9 (94.1) 

Analysis Sample (N = 7 000) 51.5 (49.5) 6.6 (93.4) 

 

 

Analytic Methods 

The RGM proposes the existence of a quantitative mode of variation in growth, 

referred to as the ‘meta-metre’, that is common to all individuals, providing relevant 

information for the comparison of average growth curves (Rao, 1958). In deriving this ‘age 

transforming function’ as Rasch first described it (Olsen, 2003), we assert that the rate of 

growth of an individual is directly proportional to the meta-metre, thus allowing comparisons 

characterised by linear relationships (Rao, 1958). Such relationships can be expressed in 

 

 

4 As previously noted, ‘gain’ data contains students across all grades (i.e., three, five, seven and nine).  
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terms of a single growth parameter, retaining dynamic consistency, whereby individual and 

group level differences can be expressed by the same mathematical function (Keats, 1980). In 

this way, while there exists a trajectory for the population, each individual retains an estimate 

that varies relative to the group as a whole (McNeish & Matta, 2018). These variables are 

defined by the data, not a priori, allowing for the modelling of individual growth trajectories 

(Jolliffe & Cadima, 2016). 

In the context of educational achievement, the RGM asserts that: 

𝑌𝑛𝑡 = 𝑎𝑛 + 𝑏𝑛𝜏(𝑡)         (1) 

where: 

𝑌𝑛𝑡 is domain-specific achievement for student n at timepoint t; 

𝑎𝑛 is the overall achievement over the time period of interest; 

𝑏𝑛 is the rate of growth in achievement for student n; and, 

𝜏(𝑡) is the time transforming function, referred to by Rasch as the meta-metre (Olsen, 2003). 

Equation (1) can be conceptualised as a single structural equation expressing growth 

rate, with coefficients 𝑎𝑛 and 𝑏𝑛 specifying the growth rate parameters (Stone, 2020). Unlike 

behavioural models which utilise multiple structural equations – typically requiring 

specialised software and knowledge for their specification and interpretation (Curran et al., 

2010) – the RGM models the group-level effect on the dependent variable, given the meta-

metre (Stone, 2020). Through this approach, the RGM asserts that the derived meta-metre 

should be equivalent for all individuals, allowing one to generalise growth in academic 

achievement and thus meaningfully represent deviations from it (Stone, 2020). 
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It is possible to estimate a meta-metre for the comparison of rates of growth (Andrich, 

Marais, & Sappl, 2022), by taking the mean measurements at each timepoint t: 

(∑ 𝑌𝑛𝑡)/𝑁𝑁
𝑛=1 =  (∑ 𝑎𝑛𝑡)𝑁

𝑛=1 /𝑁 + [(∑ 𝑏𝑛𝑡)/𝑁]𝜏(𝑡)𝑁
𝑛=1      (2) 

which can be expressed as: 

�̅�.𝑡 = �̅�. + �̅�.𝜏(𝑡)         (3) 

for the overall sample, and: 

�̅�.𝑎𝑡 = �̅�.𝑎 + �̅�.𝑎𝜏(𝑡)         (3a) 

�̅�.𝑏𝑡 = �̅�.𝑏 + �̅�.𝑏𝜏(𝑡)         (3b) 

for any specific subgroups (e.g., a and b) of interest, allowing free estimation of the meta-

metre 𝜏(𝑡): 

�̅�.𝑡 = �̅�. + �̅�.𝜏(𝑡)          

�̅�.𝑡 − �̅�. = �̅�.𝜏(𝑡)   

�̂�(𝑡) =
�̅�.𝑡−�̅�.

�̅�.
          (4) 

by substituting �̂�(𝑡) from (4) into (1), as: 

𝑌𝑛𝑡 = �̂�𝑛 + �̂�𝑛�̂�(𝑡) = �̂�𝑛 + �̂�𝑛
�̅�.𝑡−�̅�.

�̅�.
= �̂�𝑛 + (�̂�𝑛/�̅�.)(�̅�.𝑡) − (�̂�𝑛/�̅�.)(�̅�.)  

       = �̂�𝑛 + (�̂�𝑛/�̅�.)(�̅�.) − (�̂�𝑛/�̅�.)(�̅�.𝑡)      (5) 

Importantly, this can be expressed as: 

𝑌𝑛𝑡 = �̂�𝑛 + �̂�𝑛(�̅�.𝑡)         (6) 

where: 
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�̂�𝑛 = �̂�𝑛 − (�̂�𝑛/�̅�.
̂)(𝑎.̅ .

̂ )        (7) 

is the estimated normalised, relative achievement over time (i.e., initial status); and, 

�̂�𝑛 = (�̂�𝑛/�̅�.
̂)          (8) 

is the estimated normalised, relative rate of growth. This being due to: 

�̅�. = [∑ 𝐴𝑛]/𝑁 =𝑁
𝑛=1 ([∑ 𝑎𝑛]/𝑁) − 1.(�̅�.) = �̅�. − �̅�. = 0𝑁

𝑛=1    (9) 

�̅�.
̂ = [∑ �̅�𝑛

̂]/𝑁 =𝑁
𝑛=1 ([∑ 𝑏𝑛]/𝑁)/�̅�. = �̅�./�̅�. = 1𝑁

𝑛=1      (10) 

It is noteworthy that it is feasible to estimate �̂�𝑛 and �̂�𝑛 either by regressing 𝑌𝑛𝑡 on 

(𝑌.t̂), in which �̂�𝑛 and  �̂�𝑛 are dependent, or  by estimating �̂�𝑛 independently of �̂�𝑛 and then 

estimating �̂�𝑛 (Andrich, Marais, & Sappl, 2022), as expressed by: 

𝑦𝑛𝑡 = 𝑌𝑛𝑡 − 𝑌𝑛(𝑡−1) =  𝐴𝑛 + 𝐵𝑛�̅�.𝑡 − [𝐴𝑛 + 𝐵𝑛�̅�.(𝑡−1)], 𝑡 = 1,2,3 … 𝑇  (11) 

And the estimate �̂�𝑛𝑡 given by: 

�̂�𝑛𝑡 = �̂�𝑛 + �̂�𝑛�̅�.𝑡 − [�̂�𝑛 − �̂�𝑛�̅�.(𝑡−1)], 𝑡 = 1,2,3 …  𝑇 = �̂�𝑛�̅�.𝑡 − �̂�𝑛�̅�.(𝑡−1) = �̂�𝑛(�̅�.𝑡 − �̅�.(𝑡−1))  

      = �̂�𝑛�̅�.𝑡          (12) 

where: 

�̂�𝑛 = ∑ 𝑦𝑛𝑡�̅�.𝑡/𝑇
𝑡=1 ∑ �̅�2

.𝑡
𝑇
𝑡=1         (13) 

�̂�𝑛 = �̅�𝑛. − �̂�𝑛𝑌..̅         (14) 

 These parameter estimates �̂�𝑛 and �̂�𝑛 permit the comparison of individuals and 

groups of interest. The independent separation of these parameters, which incorporate the 

repeated measurements, subsequently allows the use of univariate procedures for significance 

testing. Independent samples t-test, one-way ANOVA and Tukey’s honestly significant 
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difference post hoc test were used to reveal the significance and degree of differences 

between parameter estimates for the identified, time-invariant groups of interest. These 

procedures provided tests of the null hypothesis that rates of growth and their initial status 

were the same (Greenland et al., 2016). 

The linear relationship between growth and time, conditional on the meta-metre, 

further allowed the representation of growth for separate groups to be presented as straight 

lines on a plot. These straight lines are easily interpretable as continuous changes, serving 

useful purposes in the identification of trends (Peebles & Ali, 2015). This approach avoids 

the issue of non-developmental behaviour (i.e., negative growth) characterised in quadratic 

representations (Williamson, 2016). As per the recommendations outlined in Nese, Lai and 

Anderson (2013), sets of growth plots, which permit more readily detected differences in 

growth, were subsequently used to present variation between multiple groups. 

Differences in achievement may also be represented as a function of time, providing 

another effective and easily interpretable way to visualise growth trajectories (Singer & 

Willett, 2003). A feature consistent with the RGM is the capacity to transform time such that 

– by a common transformation – individual growth curves are linearised, with slight 

variations attributable to error (Rao, 1958). This can be achieved by taking each timepoint to 

its natural logarithm (i.e., the logarithm of each timepoint taken to the base of the constant e). 

To paraphrase Rasch, this process – utilising the meta-metre – allows one to measure time in 

a particular way, allowing a uniform description of growth curves for all individuals 

considered (Olsen, 2003). 

 

Results 
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Estimates of initial achievement �̂�𝑛 and rate of growth in achievement �̂�𝑛 were 

calculated for all individuals within the sample, as well as for the overall sample and groups 

of interest. As outlined in the Analytic Methods section, the estimated normalised relative 

rate of growth for the overall sample had a mean of 1.0 (SD=0.45) and the estimated 

normalised achievement over time (i.e., initial status) had a mean of 0.0 (SD=251.41), 

consistent with expectations. Overall grade means evidenced an asymptotic decrease in the 

rate of growth over time (i.e., a decrease in the level of growth occurring between grades over 

time), prototypical of educational achievement trajectories, as shown in Table 2. 

 

Table 2 

Grade Means in NAPLAN Scale Scores 

Grade 3 Grade 5 Grade 7 Grade 9 

420.27 501.71 548.29 582.33 

 

 

Differences in Jurisdictional Growth 

Comparison of Jurisdictional Growth Parameters 

Grade means for each jurisdiction evidenced a similar asymptotic decrease in the rate 

of growth over time as that evidenced overall, as shown in Table 3. The normalised relative 

growth rate and initial status estimates for jurisdictions are presented in  
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Table 4. A representation of the distribution of growth rates and initial status across 

jurisdictions is presented in Figure 1 and Figure 2 respectively. 

 

 

Table 3 

Grade Means for each Jurisdiction 

Jurisdiction Grade 3 Mean Grade 5 Mean Grade 7 Mean Grade 9 Mean 

1 419.30 501.06 549.37 594.89 

2 441.70 517.22 562.39 596.01 

3 419.76 498.11 543.97 572.01 

4 417.20 493.41 547.16 579.77 

5 418.03 505.50 548.43 579.89 

6 377.81 467.18 516.44 551.93 
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7 448.10 529.48 570.25 601.79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Comparison of Growth Rate and Initial Status for Jurisdictions 

Jurisdiction Growth Rate (SD) Initial Status (SD) 

 1 1.05 (0.44) -22.64 (251.41) 

2 0.94 (0.44) 45.11 (239.40) 

3 0.95 (0.46) 20.52 (259.34) 

4 0.99 (0.43) 3.45 (242.03) 

5 1.02 (0.42) -12.22 (233.11) 
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6 1.08 (0.51) -77.04 (271.88) 

7 0.96 (0.43) 42.83 (239.39) 

 

  

Figure 1 Distribution of growth rates across jurisdictions 
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Figure 2 Distribution of initial status across jurisdictions 

 

Noting the linearisation of growth trajectories and independent separation of 

parameters, one-way ANOVA was used to ascertain whether observed differences in 

jurisdictional growth rates and initial status were statistically significant. There was a 

statistically significant difference observed between jurisdictional growth rates (F(6,6993) = 

14.16, p < .05). Tukey’s honestly significant difference (HSD) post hoc test was applied to 

reveal the jurisdictions to which the statistically significant differences in growth rate applied 

and their degree. As shown in Table 5, 11 of the 21 paired comparisons between jurisdictions 

showed significant differences in growth rate, the largest being 0.14 units. 

 

 

Table 5 
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Paired-comparisons in jurisdictional growth rate as determined by Tukey’s HSD 

 1 2 3 4 5 6 7 

1 -       

2 0.11* -      

3 0.10* -0.01 -     

4 0.06* -0.04 -0.04 -    

5 0.03 -0.08* -0.07* -0.04 -   

6 -0.03 -0.14* -0.13* -0.10* -0.06 -  

7 0.09* -0.02 -0.01 0.02 0.06* 0.12* - 

*Mean difference is significant at the 0.05 level 

 

There was also a statistically significant difference observed between the initial 

status’ of jurisdictions (F(6,6993) = 29.43, p < .05). Tukey’s HSD post hoc test was applied 

to reveal the jurisdictions to which the statistically significant differences in initial status 

applied and their degree.  As shown in Table 6, 13 of the 21 paired-comparisons between 

jurisdictions showed significant differences in initial status, the largest being 122.15 units. 
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Table 6 

Paired-comparisons in initial status between jurisdictions as determined by Tukey’s HSD 

 1 2 3 4 5 6 7 

1 -       

2 -67.75* -      

3 -43.15* 24.59 -     

4 -26.09 41.66* 17.07 -    

5 -10.42 57.32* 32.73 15.67 -   

6 54.40* 122.15* 97.56* 80.49* 64.82* -  

7 -65.47* 2.28 -22.31 -39.38* -55.05* -119.87* - 

*Mean difference is significant at the 0.05 level
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Visual Representation of Differences between Jurisdictions 

It is conceivable to represent differences in means simply by regressing the grade 

means for each jurisdiction on the overall sample means, as displayed in Figure 3. These 

correspond to the values obtained from Table 3 and Table 2. 

 

 

Figure 3 Grade means of each Jurisdiction plotted against the overall sample means 

 

Alternatively, as described in the Analytic Methods section, the linear relationship between 

growth and time, conditional on the meta-metre, permits a representation of growth for 

separate groups as straight lines. Figure 4, Figure 5, Figure 6 and Figure 7 show the 

comparison of grade means for select pairs of jurisdictions, plotted against the transformed 

means. The line representing growth for each jurisdiction can be characterised by two 

parameters, identified within the equation on each of the plots, which are consistent with the 

growth rate and initial status estimates displayed in  
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Table 4 with their corresponding x-axes obtained as the transformation of the sample 

means obtained from Table 3. By presenting the comparison of a pair of jurisdictions in each 

plot, the individual trajectories of growth for each jurisdiction may be compared. 

 

Figure 4 Grade means of Jurisdictions 1 and 2 plotted against the transformed means 
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Figure 5 Grade means of Jurisdictions 1 and 6 plotted against the transformed means 

 

Figure 6 Grade means of Jurisdictions 2 and 3 plotted against the transformed means 
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Figure 7 Grade means of Jurisdictions 6 and 7 plotted against the transformed means 

 

 

Growth trajectories can similarly be represented as a function of time. Attempting to 

characterise the grade means of jurisdictions from Table 3 as function of linear time (i.e., 

across the four timepoints) resulted in poor model fit, evidenced by large residuals, and 

shown in Figure 8. An alternative approach is to fit a quadratic model representing a 

curvilinear functional form, thereby minimising residuals and increasing the variance 

explained by the model due to the monotonically decreasing rate of growth. This 

representation is shown in Figure 9. However, by taking the natural logarithm of each 

timepoint, this same information can be characterised linearly, with equivalent predictive 

power (i.e., variance explained, as R2), as shown in Figure 10. 
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Figure 8 Grade means of each Jurisdiction plotted against time, assuming linear growth 

 

Figure 9 Grade means of each Jurisdiction plotted against time, assuming curvilinear 

(quadratic) growth 
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Figure 10 Grade means of each Jurisdiction plotted against time taken to its natural 

logarithm 

 

A subsequent extension of these properties is the ability to extrapolate beyond 

measured timepoints. By taking the natural logarithm of each timepoint, the expected 

achievement can be inferred on the basis of the observed values. Through extrapolation to 

log-zero (i.e., grade 1) the varying degrees of achievement in initial status at a time 

approximating entry to school can be shown, as presented in Figure 11. 
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Figure 11 Extrapolated grade means of each Jurisdiction plotted against time taken to its 

natural logarithm 

 

 

Differences in Growth between Sexes 

Comparison of Growth Parameters for each Sex 

As for each of the jurisdictions, grade means for each sex evidenced an asymptotic 

decrease in the rate of growth over time (i.e., a decrease in the level of growth in achievement 

progressing from earlier grades to later ones). These are shown in Table 7. 

Normalised relative growth rate and initial status estimates for sex are presented in  

Table 8. A representation of the distribution of growth rates and initial status across 

sexes is presented in Figure 12 and Figure 13 respectively. 
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Table 7 

Grade Means for each Sex 

Sex Grade 3 Mean Grade 5 Mean Grade 7 Mean Grade 9 Mean 

1 412.48 496.59 543.33 576.00 

2 427.90 506.72 553.14 588.52 

 

 

Table 8 

Comparison of Growth Rate and Initial Status for Sex 

Sex Growth Rate (SD) Initial Status (SD) 

1 1.02 (0.47) -15.25 (259.32) 

2 0.98 (0.43) 14.94 (242.52) 
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Figure 12 Distribution of growth rates between sexes 

 

 

 

Figure 13 Distribution of initial status between sexes 
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Independent samples t-tests were used to ascertain whether observed differences 

between sexes as shown in  

Table 8 were statistically significant. Levene's Test for Equality of Variances 

indicated heterogeneity of variance between growth rates of the two sex groups (F = 12.70, p 

< 0.05). Degrees of freedom were subsequently adjusted to accommodate this, with a very 

small statistically significant difference between the growth rates of the two groups identified 

(t(6917.23) = 3.31, p <0.05, d=0.08). 

Levene's Test for Equality of Variances also indicated heterogeneity of variance between the 

sexes’ initial status (F = 8.63, p < 0.05). Degrees of freedom were subsequently adjusted, 

with a very small statistically significant difference between initial status of the two sex 

groups, as shown in the right-hand column of  

Table 8, identified (t(6944.93) = -5.028, p <0.05, d=0.12). 

 

Visual Representation of Differences Between Sexes 

As outlined previously, it is possible to represent differences in means simply by 

regressing the grade means for each sex on the overall sample means, as displayed in Figure 

14. These correspond to the values obtained from Table 7 and Table 2. 
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Figure 14 Grade means for each sex plotted against the overall sample means 

 

Similarly, the linear relationship between growth and time, conditional on the meta-metre, 

that is afford by the RGM permits a representation of growth for separate groups as straight 

lines. Figure 15 shows the grade means for each sex plotted against the transformed means. 

The line representing growth for each group can be characterised by two parameters, 

identified within each of the equations shown on the plots, which are consistent with those 

growth rate and initial status estimates displayed in  

Table 8, with x-axes corresponding to the time-based transformation of grade means 

obtained from Table 7. 

 



APPLICATION OF THE RASCH GROWTH MODEL 38 

 

 

 

Figure 15 Grade means for each sex plotted against the transformed means 

 

 

Attempting to characterise the grade means for each sex from Table 7 as function of 

linear time (i.e., across the four timepoints) once again resulted in poor model fit as 

evidenced by large residuals and shown in Figure 16. An alternative approach in which a 

curvilinear (i.e., quadratic) model is fitted minimised residuals and increased the variance 

explained by the model due to the monotonically decreasing rate of growth, as presented in 

Figure 17. As applied to the jurisdictional data, taking the natural logarithm of each timepoint 

allowed the same information presented in Figure 17 to be characterised linearly with an 

equivalent level of predictive power (i.e., variance explained as R2), as shown in Figure 18. 
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Figure 16 Grade means for each sex plotted against time, assuming linear growth 

 

 

Figure 17 Grade means for each Sex plotted against time assuming curvilinear (quadratic) 

growth 
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Figure 18 Grade means for each Sex plotted against time taken to its natural logarithm.  
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Applying the same extension of the RGM to extrapolate beyond measured timepoints 

for each sex group as was undertaken for jurisdictions, the natural logarithm of each 

timepoint was taken, thereby permitting an inference regarding expected achievement on the 

basis of the observed values. A very small difference in the degree of achievement at a time 

approximating entry to school through extrapolation to log-zero (i.e., Grade 1) is shown in 

Figure 19. 

 

 

Figure 19 Extrapolated grade means for each Sex plotted against time taken to its natural 

logarithm 
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Differences in Growth between ATSI groups 

Comparison of Growth Parameters for ATSI groups 

Grade means for each ATSI group evidenced the same asymptotic decrease in the rate 

of growth over time (i.e., a decrease in the level of growth in achievement from earlier grades 

to later ones) as both jurisdiction and sex analyses, as shown in  

Table 9. The normalised relative growth rate and initial status estimates for each ATSI 

group are presented in  

Table 10. A representation of the distribution of these two parameters across the two 

ATSI groups is presented in Figure 20 and Figure 21 respectively. 

 

Table 9 

Grade Means for each ATSI group 

ATSI Grade 3 Mean Grade 5 Mean Grade 7 Mean Grade 9 Mean 

0 425.82 507.26 553.61 587.51 

1 342.03 423.45 473.27 509.29 

 

 

Table 10 

Comparison of Growth Rate and Initial Status for ATSI groups 

ATSI Growth Rate (SD) Initial Status (SD) 

0 1.00 (0.44) 6.20 (244.92) 
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1 1.02 (0.60) -87.31 (317.18) 

 

  

Figure 20 Distribution of growth rates between ATSI groups 
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Figure 21 Distribution of initial status between ATSI groups 

Independent samples t-tests were used to ascertain whether observed differences 

between ATSI groups as shown in  

Table 10 were statistically significant. Levene's Test for Equality of Variances 

indicated heterogeneity of variance between growth rates of the two ATSI groups (F = 29.71, 

p < 0.05). Degrees of freedom were subsequently adjusted to accommodate this, with no 

statistically significant difference found between growth rates of the two groups shown in the 

left-hand column of  

Table 8, (t(497.98) = .818, p = .41). 

Levene's Test for Equality of Variances also indicated heterogeneity of variance between 

ATSI-group initial status (F = 16.81, p < 0.05). Degrees of freedom were subsequently 

adjusted, with a small statistically significant difference between initial status of the two 

ATSI groups, as shown on the right-hand column of  

Table 10, identified (t(502.96) = -6.22, p <0.05, d=0.33). 

 

Visual Representation of Differences between ATSI Groups 

 The same representation of grade means regressed on overall sample means as was 

presented for jurisdictions and sexes is displayed in Figure 22. The values correspond to 

those obtained from Table 2 and  

Table 9. 
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Figure 22 Grade means of ATSI groups plotted against the overall sample means 

 

 

Figure 23 shows the grade means of each ATSI group plotted against the transformed 

means (i.e., conditional on the meta-metre), which are represented as straight lines. The line 

representing growth for each group is be characterised by two parameters, identified within 

the each equation on the plots, which are consistent with those growth rate and initial status 

estimates displayed in  

Table 10, with their corresponding x-axes obtained from the time-based 

transformation of means from  

Table 9. 
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Figure 23 Grade means of ATSI groups plotted against the transformed means 

 

 

Growth trajectories can similarly be represented as a function of time. Attempting to 

characterise the ATSI grade means from  

Table 9 as function of linear time (i.e., across the four timepoints) once again resulted 

in poor model fit as evidenced by large residuals and shown in Figure 24. Fitting a quadratic 

model that assumes a curvilinear functional form minimised residuals and increased the 

variance explained by the model due to the monotonically decreasing rate of growth, as 

shown in Figure 25. By taking the natural logarithm of each timepoint, this same information 

can be characterised linearly, with the same level of predictive power (i.e., variance explained 

as R2), as shown in Figure 26. 
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Figure 24 Grade means of ATSI groups plotted against time, assuming linear growth 

 

 

Figure 25 Grade means of ATSI groups plotted against time assuming curvilinear 

(quadratic) growth 
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Figure 26 Grade means of ATSI groups plotted against time taken to its natural logarithm. 

 

 

By applying the same extension to extrapolate the grade means of each ATSI group 

beyond measured timepoints as was applied to previous groups, inferences regarding 

expected achievement on the basis of the observed values measured against the natural 

logarithm of time can be derived. Notable differences in the degrees of achievement at a time 

approximating entry to school through extrapolation to log-zero (i.e., grade 1) are shown in 

Figure 27. As noted previously, there was no statistically significant difference in the growth 

rates of the two groups. 
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Figure 27 Extrapolated grade means of ATSI groups plotted against time taken to its natural 

logarithm 

 

 

Discussion 

Characterising Growth in Two Parameters 

By applying the RGM to a longitudinal data set containing individual measures of 

educational achievement in the form of NAPLAN scale scores, and using time-invariant 

variables pertaining to student jurisdiction, sex and ATSI identification, it was possible to 

derive a set of parameters by which growth rates and initial status for these groups could be 

compared. 

As summarised in  
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Table 4, it was possible to characterise the growth of each jurisdiction by two 

parameter estimates – the growth rate and initial status. Utilising the independent separation 

of these parameters, univariate tests of significance and multiple comparisons (i.e., post hoc 

tests) were applied to determine the degree to which differences were statistically significant. 

These two parameter estimates were subsequently used to visually represent the variation in 

growth trajectories between each jurisdiction, as shown in Figure 4, Figure 5, Figure 6 and 

Figure 7. By combining the use of statistical methods and visual representation, it is possible 

to observe the degree to which differences exist simply by comparing the linear trajectories. 

For instance, in Figure 4 it is clear that while jurisdiction 2 starts with a higher rate of mean 

achievement as reflected in the grade 3 mean, the rate at which achievement grows in 

jurisdiction 1 is considerably greater. Confidence in this assertion is provided via the use of 

ANOVA. Such findings can be contrasted against those shown in Figure 5, in which the rates 
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of growth between jurisdiction 1 and 6 do not differ (i.e., no statistically significant 

difference in growth rate was found) as exemplified by the parallel trajectories. 

The capacity to derive parameters, plot them and compare them visually was also 

demonstrated for both sex and ATSI groups.  Figure 15 shows that while statistically 

significant differences were observed in both the growth rate and initial status of the sex 

groups, as summarised in  

Table 8, the degree to which they differed was negligible. This was reflected statistically in 

the very small value of the Cohen’s d statistic (Cohen, 1988). The variation in observed mean 

scores across grades shown in Figure 15 can be contrasted against Figure 235, in which clear 

differences exist in the initial status of ATSI and non-ATSI students, as summarised in  

Table 10. The differences shown graphically, and supported by significance testing, 

indicate considerable, persistent disparities in educational achievement from the outset. This 

occurs despite a lack of variation between the groups in their rate of growth. Such 

observations highlight group-level differences requiring further exploration and may be the 

catalyst for further research and publicly funded initiatives. 

Through the presentation of group means as a function of time, it was demonstrated 

that attempts to fit simple relationships based on a linear functional form were inappropriate, 

as evidenced in Figure 8, Figure 16 and Figure 24. A more appropriate fit based on 

curvilinear relationships was observed in Figure 9, Figure 17 and Figure 25, although the 

complexities of such relationships, with quadratic terms that can be challenging in their 

interpretation6, obviate the benefits sought. It was demonstrated that through the application 

 

 

5 It should be noted that variation exists in the scales used to represent y-axes in each of the plots, 

which should be considered in the interpretation of differences in magnitude. 
6 While the interpretation of quadratic relationships is beyond the scope of this paper, one should 

consider that to make a determination the vertex of the parabola must first be calculated and compared to 
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of a semi-log transformation of time, an essentially equivalent degree of fit to that of 

quadratic approaches could be demonstrated, as shown in Figure 10, Figure 18 and Figure 27. 

 

 

 

Extrapolation Beyond Measured Timepoints 

A subsequent extension of the linearity property is the capacity to extrapolate beyond 

measured timepoints. In his paper on academic growth, Williamson (2016) emphasises the 

need for caution in the process of extrapolation for two reasons: first, because there is no 

measured data and no capacity to check whether growth from other grades can be described 

by the same model; and second, the complex nature of quadratics and the reversal in direction 

of curvature associated with the curvilinear functional form. While the former point requires 

careful consideration, the latter is resolved through the approaches permissible under the 

RGM. 

Noting the requirement to exercise appropriate levels of prudence in result interpretation, 

several interesting observations across the groups of interest can be made. As shown in 

Figure 11, there are varying degrees of expected achievement at the extrapolated timepoint 

equivalent to Grade 1 (i.e., ln(1), visible at the intersection of each line and the y-axis).  For 

example, by comparing jurisdictions 6 and 7 – similarly presented without extrapolation 

using the growth rate and initial status coefficients in Figure 7 – a clear difference at the 

extrapolated timepoint is observed, with students in jurisdiction 7 demonstrating higher 

achievement earlier. However, one can also note the steeper growth trajectory evidenced by 

 

 

specific ranges for each group. In each of the examples presented in this paper, the quadratic term is negative, 

meaning the linear and quadratic terms have differential effects on the curve at different locations. 
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jurisdiction 6, indicating a higher growth rate. These differences can be contrasted to the 

linearised curves of jurisdictions 4 and 5, which evidence very similar – and not significantly 

different – growth rates and initial status. While such values are reflected in the parameter 

estimates (e.g., in  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4), their presentation in a linearised, extrapolated form allows for a further 

efficiency in their comparison. Furthermore, significant findings may point to evidence of 

early educational advantage in certain jurisdictions and varying degrees of improvement over 

the course of schooling, as consistent with previous research (e.g., Goss et al., 2018). 

As previously articulated, both in Figure 15 and Table 8, the degree to which sexes 

differed was small although significant with respect to both summative parameter estimates, 

which are evident at the extrapolated Grade 1 values shown in Figure 19. Such sex 

differences have been noted elsewhere (e.g., Thomson, De Bortoli, Underwood, & Schmid, 

2019). This is in contrast to the evidence provided in Figure 27, which suggests considerable 

differences in the overall levels of educational achievement at the commencement of 
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schooling for ATSI and non-ATSI students. These findings are consistent with both 

qualitative and quantitative research across a variety of disciplines (e.g., Guenther, Bat, & 

Osborne, 2013; Gray & Beresford, 2008; Thomson, De Bortoli, Underwood & Schmid, 2019) 

as well as Australian government reporting (e.g., Department of Prime Minister and Cabinet, 

2018). One observation of note, however, is the lack of difference in growth rates between 

these groups. Such findings contradict other research in the area (e.g., Bradley, Draca, Green, 

& Leeves, 2007) and, while requiring further investigation as to the source (whether 

divergent due to methodology or substantive reasons), provide a positive message regarding 

the growth trajectories of a group known to face considerable educational disadvantage and 

may substantiate the need for further policy reform in this area. 

 

Limitations of the RGM 

While the RGM provides an effective method through which group growth can be 

described and compared, the model itself is not explanatory. As in analytic methods such as 

principal components analysis, the purpose of the model is largely descriptive (Jolliffe & 

Cadima, 2016); therefore, no attempt is made to provide clarity on the multitude of possible 

factors contributing to observed differences. While providing an effective method for 

reporting and lending itself to use as a preliminary step in research activities, the testing of 

complex theories is reserved for alternative models. As broad sets of such methodological 

approaches exist, it is recommended that further research compare estimates derived from 

such models against those of the RGM, while also considering the properties associated with 

their outcomes. 
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A further limitation of the RGM is the requirement for complete longitudinal data. 

While the model retains dynamic consistency (Keats, 1980), the incorporation of individual 

differences in the estimates of group-level summative parameters results in a requirement for 

non-missing data. One outcome of this is the possibility of correlations between rates of 

attrition and other variables of interest. While the current application pertains to a census-

based assessment with very high participation rates (i.e., greater than 95%; Australian 

Curriculum, Assessment and Reporting Authority, 2019), the possibility remains that high 

rates of withdrawal or attrition could feasibly give rise to systematic biases within certain 

sub-groups, thus limiting the interpretability of results.  

Similarly, while the present analysis was undertaken predominantly for demonstrative 

purposes, it should be noted that it was applied to a limited data set. While efforts were made 

to retain consistency with the original data through a comparison of the distribution of 

variables of interest, the analysis and results may include sampling biases that obscure true 

results. For example, as no data was available one jurisdiction, the present derivations are 

based on a sub-set of the total population. Equally, there were data linkage challenges that 

resulted in a loss of cases through the matching of students across each NAPLAN cycle – 

2013, 2015, 2017 and 2019. To resolve this, the introduction of universal student identifiers 

for the purposes of data linkage would likely be required, particularly if such approaches 

were to be implemented at scale. While recommendations put to government have advocated 

for the implementation of these to serve the needs of longitudinal approaches (e.g., Gonski et 

al., 2018), such decisions may require further ethical examination prior to implementation 

(Arnold, 2013). 
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Concluding Remarks and Future Directions 

This research investigated the application of the RGM for evaluating differences 

between groups. This came in response to calls for reporting of progress in student 

achievement throughout the course of schooling. The research utilised the summative 

properties of the RGM and its capacity to represent growth in an easily interpretable manner 

to evaluate variations in NAPLAN reading achievement between jurisdictions, sexes and 

groups categorised on the basis of ATSI identification. 

By applying the RGM, it was possible to derive a set of parameter estimates through 

which growth could be compared. The degree of variability in the initial status and growth of 

jurisdictions was considerable. Very small but significant differences were observed in both 

the growth rate and starting location of students grouped by sex, while significant differences 

were observed in the starting locations of ATSI and non-ATSI students but not in their 

growth rates. Each set of results was presented graphically, visually emphasising areas of 

variability while also demonstrating qualities associated with the RGM. It was also possible 

to highlight potential variation in the achievement of students at entry to school through the 

extrapolation of observed results, although caution was highlighted in the adoption of this 

process. While descriptive in their presentation, the results point to areas for further 

investigation. 

In utilising the RGM, it is noted that there exists a wide variety of current growth 

models that incorporate individual variability and permit the modelling of complex 

developmental theories (Duncan & Duncan, 2004). Such approaches often draw on the 

traditions of hierarchical linear modelling (HLM; Raudenbush & Bryk, 2002) and structural 

equation modelling (SEM; Meredith, & Tisak, 1990). While the RGM serves an effective, 
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niche method – providing what Goss et al. (2018) describe as a need for approaches that 

accommodate non-linear rates of growth for the purpose of comparing relative student 

progress – additional value could be sought through the comparison of group estimates 

derived under different methodologies. In the case of the RGM, the linearisation of growth 

rates via the instantiation of the meta-metre, conforming to properties consistent with 

objective measurement, provides a benefit that may not be realised in alternative approaches. 

Noting the use of the meta-metre in deriving comparative estimates, a focus for 

further research lies in the impact of violations of this time transforming function, and the 

conditions under which these are likely. While Rao (1958) describes a process in which the 

existence of a common transformation can be empirically tested, the degree to which such 

violations may impact parameter interpretation has not been investigated. Due to the novelty 

of these methods, further inquiry into such conditions would be an appropriate next step in 

evaluating the application of the RGM. Future applications would also benefit from 

exploration into the error terms associated with the RGM parameter estimates. Citing Brody 

(1993), Stone (2020) highlights that the approach used in the model essentially averages over 

incidentals (i.e., individual variation and error) with the view to overwhelm individual levels 

of variation and move to a superordinate level of aggregation. While this may provide 

appropriate summative properties, the implications of doing so – as well as the consequences 

of the incorporation of measurement error into specific measurement types (i.e., WLEs; von 

Davier, Gonzales, & Mislevy, 2009) – requires evaluation. 

Despite the limitations associated with the uniqueness of this under-utilised method, 

the present investigation has provided support for the effectiveness and efficiency of the 

approach to growth modelling first proposed by Rasch. Through a combination of examples, 
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it has demonstrated that the RGM allows for the efficient comparison of groups in a manner 

that is both statically rigorous and commonly accessible. Such an approach provides both a 

novel and effective means by which growth may be reported and an avenue for further 

investigation into group-level differences via qualitative and quantitative research.  
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