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Abstract

This paper presents a formula for calculating a reinsurance premium which has been

determined by incorporating a lognormal-burr model into a risk-adjusted premium calculating

principle called the PH-transform principle. The lognormal-burr model has been selected and

validated as the best fitting model for the used insurance data among the eight candidates of

composite lognormal models. The formula has then been applied in calculating reinsurance

premiums for an automobile insurance branch under an excess of loss non-proportional

reinsurance treaty.
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Abstract 

        This paper presents a formula for calculating a reinsurance premium which has been 

determined by incorporating a lognormal-burr model into a risk-adjusted premium calculating 

principle called the PH-transform principle. The lognormal-burr model has been selected and 

validated as the best fitting model for the used insurance data among the eight candidates of 

composite lognormal models. The formula has then been applied in calculating reinsurance 

premiums for an automobile insurance branch under an excess of loss non-proportional 

reinsurance treaty. 
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1.    Introduction 

 

        The risk faced by insurance companies in insuring goods and services is enormous. 

Claims may be made in such a way that the insurance company fails to pay them. You may 
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take an example of an insurance company which may insure 10 houses from the same 

locality: the premium paid by the insured is usually less than the value of the property being 

insured, however, the insurance company promises to pay to the value of the property in case 

of damage. In the case where all the 10 houses are damaged completely due to, for example, 

an earthquake occurring in the locality, the insurance company is definitely not going to 

manage to pay all the claims which are going to be made. It is for cases as such that insurance 

companies go for reinsurance so that in case the claims are beyond paying them, the 

reinsurance company may come in to help. 

       The challenge that comes in now is how to calculate the reinsurance premium. Some 

reinsurance companies just multiply a certain rate to the total of collected premiums of a 

branch being reinsured and the result gotten is the reinsurance premium which they will 

require to be paid from the insurance company seeking reinsurance. However, this would not 

take into consideration the randomness nature of the claims being made. For this reason, 

actuaries have developed probabilistic models to be used in calculating reinsurance 

premiums. Premiums are calculated in such a way that data is first modelled to fit the 

candidate probability distributions. Then the best fitting probability distribution among the 

candidates is incorporated in an appropriate risk measure, requiring it, called the premium 

calculating principle. 

    Some of the risk measures called premium calculating principles that require fitting a 

probability distribution are the pure premium principle, expected value principle, variance 

principle, standard deviation principle, exponential principle, Esscher principle and the risk-

adjusted premium principles [3]. 

    Despite having been there so many desirable properties which a premium calculation 

principle must satisfy, Dickson (2005) lists most of the basic properties such as non-negative 

loading, additivity, scale invariance, consistence and no ripoff. And it was shown that the risk 

adjusted premium principle satisfies all except one, the property of additivity [3]. This 

definitely makes it one of the most desirable premium calculation principles to use for 

calculating either insurance or reinsurance premiums. 

    Now, the issue of which probability distribution to incorporate in the premium calculating 

principle is very serious. Distributions of insurance data have often been that of positive skew 

with a thick upper tail indicating a mixture of moderate and large claims [7]. In other words, 

they consist of what are called a head and a tail for moderate and large claims respectively 

[2].  Depending on whether moderate claims or large claims dominate the data, Calderin-

Ojeda and Kwok (2015) explain that standard probability distributions such as Pareto, 

Gamma, Weibull, Lognormal and Inverse Gaussian have often been used to model the data. 

The only problem of modelling had often come in when the dominance of both moderate and 

large claims was apparent. To overcome this problem, several papers have proposed the use 

of composite probability models [7]. The composition of these models are two pieces of 

distributions separated at a certain threshold [16]. To model moderate claims for a head of a 

distribution, some papers have proposed the use of Weibull probability distribution [2] and 

others have proposed the use of lognormal [12]. Although Pareto has often been used to 

model the large claims for distributions’ tails, some papers such as that of Nadarajar and 

Bakar (2012), have shown that Burr distribution modelled better when they worked with 

Danish Fire Insurance Data and also, the paper by Bakar, Hamzah, Maghsoudi and Nadarajar 
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(2015), have proposed the use of Burr, loglogistic, paralogistic, generalised pareto, pareto, 

inverse burr, inverse pareto and inverse paralogistic. 

    In the case where Weibull distribution is used in the head part, a composite model becomes 

a Composite Weilbull Model [2] and in the case where, instead of Weibull, we use 

lognormal, it becomes Composite lognormal model [12]; the composite model naming 

becomes dependent on the probability distribution modelling moderate claims, on the head. 

     Summarily, this paper presents section 2 with the type of risk-adjusted premium principle 

(the PH-transform principle) which will be used for reinsurance premium calculation, the 

general structure in terms of probability density function (5) and cumulative distribution 

function (9) for the two-piece composite probability distribution models which will be able to 

take lognormal for the head and seven diverse other probability distributions for the tail in 

section 3, some characteristics of the excess of loss reinsurance treaty essential for this study, 

the two reinsurance premium formulae and the methods used in selecting and validating the 

best among the candidate composite models.  Section 3 presents the fitting of the candidate 

models to the data, selecting and validating the best fitting models, incorporation of the best 

and valid composite model into the reinsurance premium formulae (12) and (13), and the 

computation of the reinsurance premiums at diverse values of treaty priorities (retentions) 

while adjusting the risk aversion index thrice. Section 4 presents the evaluation of results 

obtained in section 3, section 5 presents some limitations to some of the mathematical 

methods used in this paper and section 6 presents all the general tools and techniques used in 

this paper to arrive at our results.  

 

2.      Theoretical Framework 

 

2.1 Risk-Adjusted Premium Calculation Principle 

 

Given that 𝑋 is a non-negative random variable representing insurance claims, its survival 

function will be given by 𝑆𝑋(𝑥) = 𝑃(𝑋 > 𝑥) = 1 − 𝐹(𝑥) [3], [9].  

By using transforms to distort 𝑋’s survival function as 𝑆𝑍(𝑥) = 𝑔(𝑆𝑋(𝑥)), Wang(1996b) 

proposed a general class of premium calculation principles given by 

 

Π𝑋 = ∫ 𝑔(𝑆𝑋(𝑥))𝑑𝑥
+∞

0
                             (1) 

where the function g: 

                             - is increasing, continuous, concave, and we have 𝑔(0) = 0 and 𝑔(1) = 1 

[9]. 

 

The premium calculation principles we get from the above general class are called the risk 

adjusted premium principles. When the survival function is distorted by having 𝑔(𝑥) = 𝑥
1
𝑟⁄ , 

we get a risk adjusted premium principle called the proportional hazard transform (PH-

transform) principle given by  
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Π𝑟(𝑋) = ∫ (𝑆𝑋(𝑥))
1
𝑟⁄ 𝑑𝑥

+∞

0
                        (2) 

where 𝑟 ≥ 1, and 𝑟 is referred to as a risk aversion index [9]. 

 

2.2 Two-Piece Composite Models Structure in Terms of PDF and CDF 

Knowing that the survival function 𝑆𝑋(𝑥), in equation (2), equals 1 − 𝐹(𝑥), it is evident that 

the challenge is in determining the better fitting 𝐹(𝑥) and this paper proposes the use of 

composite lognormal Models which were proposed by Nadarajar and Bakar (2012). 

Nadarajar and Bakar (2012) present a general two probability density function of composite 

models in the form 

𝑓(𝑥) = {
𝑓𝐶𝑜𝑚𝑝1(𝑥)   ,     𝑖𝑓  − ∞ < 𝑥 ≤  𝜃

𝑓𝐶𝑜𝑚𝑝2(𝑥)   ,    𝑖𝑓  𝜃 < 𝑥 < +∞
                                   (3) 

getting equated to 

𝑓(𝑥) = {
𝑎1𝑓1

∗(𝑥)   ,     𝑖𝑓  − ∞ < 𝑥 ≤  𝜃

𝑎2𝑓2
∗(𝑥)   ,    𝑖𝑓  𝜃 < 𝑥 < +∞

                               (4) 

Where 𝑓𝐶𝑜𝑚𝑝1(𝑥) is standing for the head part of the distribution modelling moderate claims while 

being taken as a lognormal probability density function and 𝑓𝐶𝑜𝑚𝑝2(𝑥) is standing for the tail part of 

the distribution modelling large claims while it can be taken by diverse probability density functions 

such as pareto, inverse pareto, burr, inverse burr, paralogistic, inverse paralogistic and loglogistic,  

From equation (4), we have 𝜃 representing a threshold at which the distribution modelling 

moderate claims separates from a distribution modelling large claims. Also, we have  𝑓1
∗(𝑥) =

𝑓1(𝑥)

𝐹1(𝜃)
 and  𝑓2

∗(𝑥) =
𝑓2(𝑥)

{1−𝐹2(𝜃)}
 . The non-negative weights 𝑎1 and 𝑎2 are factors of normalisation given 

by  𝑎1 =
1

1+𝜙
  and 𝑎2 =

𝜙

1+𝜙
   such that, for  𝜙 =

𝑓1(𝜃)[1−𝐹2(𝜃)]

𝑓2(𝜃)𝐹1(𝜃)
> 0  we have 𝑎1 + 𝑎2 = 1. 

The probability density function (4) must be continuous and differentiable at the threshold 𝜃 

and to be sure that these properties are always satisfied, Nadarajar and Bakar (2013) imposed  

𝑎1𝑓1
∗( 𝜃 ) = 𝑎2𝑓2

∗( 𝜃 ) and 𝑎1
𝑑𝑓1

∗( 𝜃 )

𝑑𝜃
= 𝑎2

𝑑𝑓2
∗( 𝜃 )

𝑑𝜃
. 

In replacing the above expressions for 𝑓1
∗(𝑥), 𝑓2

∗(𝑥), 𝜙,  𝑎1 and  𝑎2 into equation (4), we obtain 

[16] 

𝑓(𝑥) = {

1

1+𝜙

𝑓1(𝑥)

𝐹1(𝜃)
, 𝑠𝑖 − ∞ < 𝑥 ≤  𝜃

𝜙

1+𝜙

𝑓2(𝑥)

{1−𝐹2(𝜃)}
, 𝑠𝑖  𝜃 < 𝑥 < +∞

                                  (5) 

 

The cumulative distribution function (cdf) 𝐹(𝑥) will be obtained by integrating the pdf (5) in 

order to have an expression of the form 

𝐹(𝑥) = {
𝐹𝐶𝑜𝑚𝑝1(𝑥)   ,     𝑠𝑖 − ∞ < 𝑥 ≤  𝜃

𝐹𝐶𝑜𝑚𝑝2(𝑥)   ,    𝑠𝑖  𝜃 < 𝑥 < +∞
                                     (6) 
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such that 𝐹(𝑥) satisfies the following properties [11]: 

- 0 ≤  𝐹(𝑥)  ≤  1 ; 

- 𝐹 is non-decreasing, that is to say if 𝑥 < 𝑦, then F(𝑥) < 𝐹(𝑦) ; 

- lim
𝑥→+∞

𝐹(𝑥) = 1 and lim
𝑥→−∞

𝐹(𝑥) = 0 ; 

- 𝐹 is continuous to the right, that is to say 

         lim
𝑦↓𝑥

𝐹(𝑦) = 𝐹(𝑥)                                                      

 

By integrating each piece of (5) separately, we have 

𝐹𝐶𝑜𝑚𝑝1(𝑥) = ∫ 𝑓𝐶𝑜𝑚𝑝1(𝑡)
𝑥

−∞
𝑑𝑡 =

1

1+𝜙

1

𝐹1(𝜃)
∫ 𝑓1(𝑡)
𝑥

−∞
𝑑𝑡 =

1

1+𝜙

1

𝐹1(𝜃)
[𝐹1(𝑥) − lim

𝑡→−∞
𝐹1(𝑡)] =

1

1+𝜙

1

𝐹1(𝜃)
[𝐹1(𝑥) − 0] =

1

1+𝜙

𝐹1(𝑥)

𝐹1(𝜃)
                                                                             (7) 

 

and 

𝐹𝐶𝑜𝑚𝑝2(𝑥) = 𝐹𝐶𝑜𝑚𝑝1(𝜃) + ∫ 𝑓𝐶𝑜𝑚𝑝2(𝑡)
𝑥

𝜃
𝑑𝑡 =

1

1+𝜙

𝐹1(𝜃)

𝐹1(𝜃)
+

𝜙

1+𝜙

𝐹2(𝑥)−𝐹2(𝜃)

{1−𝐹2(𝜃)}
=

1

1+𝜙
+

𝜙

1+𝜙

𝐹2(𝑥)−𝐹2(𝜃)

{1−𝐹2(𝜃)}
  =

1

1+𝜙
[1 + 𝜙

𝐹2(𝑥)−𝐹2(𝜃)

{1−𝐹2(𝜃)}
]                                                                                                   (8) 

Thereby giving the following cumulative distribution function 

𝐹(𝑥) = {

1

1+𝜙

𝐹1(𝑥)

𝐹1(𝜃)
   ,                                               𝑠𝑖 − ∞ < 𝑥 ≤  𝜃

1

1+𝜙
[1 + 𝜙

𝐹2(𝑥)−𝐹2(𝜃)

1−𝐹2(𝜃)
]   ,                  𝑠𝑖  𝜃 < 𝑥 < +∞

                         (9) 

 

 

 

2.3 Excess of Loss Non-Proportional Reinsurance Treaty 

This treaty has characteristics such as treaty priority, treaty guarantee and treaty ceiling [6]. 

 

2.3.1 The Treaty Priority 

The priority also called the retention 𝑅 is the agreement’s claim amount at which a Reinsurer 

intervenes provided the claim or claims of an event amount equals or exceeds 𝑅 [10]. 

 

2.3.2 The Treaty Guarantee 

The treaty guarantee or the limit ℎ is the agreed amount exceeding 𝑅 beyond which the 

Reinsurer does not intervene in paying the claim or claims of an event. This means the 

Reinsurer is obliged to pay a claim or claims of an event exceeding 𝑅 but this claim (or 

claims of event) must be less than or equal to ℎ [6]. However, it must be noted that some 
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excess of loss non proportional reinsurance treaties have a treaty guarantee without limit, i.e. 

ℎ = +∞ [13]. 

 

2.3.3 The Treaty Ceiling 

The treaty ceiling 𝑅 + ℎ is an amount of a claim or claims of an event beyond which the 

Reinsurer does not intervene [6]. This means the Reinsured is itself responsible to pay an 

amount of claim in excess of 𝑅 + ℎ. Also to be noted that in case of limitless treaty 

guarantee, the Reinsurer is responsible to pay any amount exceeding the retention 𝑅. 

 

2.3.4 Reinsurer’s Responsibility in Limitless Treaty Guarantee Case 

In this case, where 𝑋 is a random variable for a claim or claims of event amount, the amount 

𝐿ℎ→+∞ to be paid by the Reinsurer is presented as 

𝐿ℎ→+∞(𝑋) = {
0,            𝑖𝑓   0 ≤ 𝑋 < 𝑅
𝑋 − 𝑅          𝑖𝑓   𝑅 ≤ 𝑋

                                          (10) 

 

 

2.3.5 Reinsurer’s Responsibility in Limited Treaty Guarantee Case 

In this case, 𝑋 being a random variable for claims, the amount to be paid or contributed 

towards payment of a claim or claims of an event amount is given by [9] 

𝐿ℎ(𝑋) = {

0,            𝑖𝑓   0 ≤ 𝑋 < 𝑅
𝑋 − 𝑅          𝑖𝑓   𝑅 ≤ 𝑋 < 𝑅 + ℎ

ℎ          𝑖𝑓  𝑋 ≥ 𝑅 + ℎ
                                   (11) 

 

 

 

2.4 Reinsurance Premium 

The premium calculation principle (2) is a perfect example for calculating a reinsurance 

premium if it were assumed that any amount made as a claim was to be paid by the Reinsurer 

and the excess of loss non proportional reinsurance treaty does not contain any such 

characteristics as treaty priority, treaty guarantee and treaty ceiling: this can be observed by 

the integration being carried out between 0 and +∞. However, in the presence of treaty 

priority, treaty guarantee and treaty ceiling, the reinsurance premium will be calculated as 

follows [9]: 

 

2.4.1 Reinsurance Premium in Limitless Treaty Guarantee Case 

 



7 
 

Π𝑟(𝑅) = ∫ (𝑆𝑋(𝑥))
1
𝑟⁄ 𝑑𝑥

+∞

𝑅
                                (12) 

 

2.4.2 Reinsurance Premium in Limited Treaty Guarantee Case 

 

Π𝑟(𝑅) = ∫ (𝑆𝑋(𝑥))
1
𝑟⁄ 𝑑𝑥

𝑅+ℎ

𝑅
                                (13) 

 

2.4.3 Reinsurance Premium where F(x) is Composite Lognormal Distribution 

This will be determined after having selected a best fitting composite lognormal distribution 

model to data in section 3. Before presenting section 3, we present tools for selecting a best 

fitting probability distribution to data in section 2.5. 

 

 

2.5 Tools for Selecting a Best Fitting Probability Distribution Model  

 

2.5.2 Estimation of Parameters and Classification of Candidate Models 

 

Maximum Likelihood Estimator (MLE) 

 

By maximum likelihood method, we estimate parameters of a given probability distribution 

by differentiating the function 𝑙𝑜𝑔𝐿(𝜃; 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), called the log-likelihood, in terms of 

parameters being represented by 𝜃. The derivatives are then equated to zero and then we 

solve for the parameters [5]. Usually, this method takes long or is complicated to use, as a 

result, we apply to it numerical methods to arrive at estimated parameters, see [2], [12]. 

Please take note that 

- (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) is a sample of 𝑛 observed random variables which are independent 

and of the same probability distribution. 

- 𝐿(𝜃; 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) is a joint probability distribution function called joint 

cumulative distribution function if (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) is discrete or joint probability 

density function if (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) is continuous. It is called a likelihood function 

and is considered as a function of only 𝜃. 

- 𝜃 is a set of all parameters of a given probability distribution. 

After estimations, estimated parameters come along with a value called the log-likelihood 

value. 

 

Akaike Information Criterion (AIC) 
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The criterion is used to measure the quality of a model by penalising the model in terms of its 

number of parameters. It is most suitable to use only for classification purposes of 

distributions than for making decisions [13]. And the model with the smallest AIC is 

classified as the best. The AIC is given by  

𝐴𝐼𝐶 = 2𝑁𝐿𝐿 + 2𝑘 

Where 𝑘 is a number of parameters to estimate for the model and NLL is a negative log-

likelihood value. 

 

2.5.1 Goodness of fit Tests 

 

We will use the goodness-of-fit tests as used by Calderin-Ojeda and Kwok (2015). They 

defined goodness-of-fit measures as test statistics that quantify the ‘distance’ between 

empirical distribution function (EDF) constructed from the data and the cumulative 

distribution function (cdf) of the fitted models. Based on the work of Rizzo (2009), they 

suggested the use of 

 

 Kolmogorov-Smirnov (KS) test statistics given by 𝐷 = max (𝐷+, 𝐷−),  

where 𝐷+ = max
1≤𝑗≤𝑁

{
𝑗

𝑁
− 𝐹̂(𝑥(𝑗))} and 𝐷− = max

1≤𝑗≤𝑁
{𝐹̂(𝑥(𝑗)) −

𝑗−1

𝑁
} 

 

 Cramer-von Mises (CvM) test statistic given by 𝑊2 = ∑ [𝐹̂(𝑥(𝑗)) −
2𝑗−1

2𝑁
]
2

𝑁
𝑗=1 +

1

12𝑁
 

 

 Anderson-Darling (AD) test statistic given by 𝐴2 = −𝑁 −
1

𝑁
∑ [(2𝑗 − 1) log (𝐹̂(𝑥(𝑗))) +
𝑁
𝑗=1

(2𝑛 + 1 − 2𝑗) log( 1 − 𝐹̂(𝑥(𝑗)))] 

Where, 

𝐹̂ is the cdf of the fitted model, 𝑥1, 𝑥2, … , 𝑥𝑁 is the original data and 𝑥(1), 𝑥(2), … , 𝑥(𝑁) is an 

increasing ordered data from the original data. And the smaller the values of KS, CvM and 

AD are, the better the model fits the data [7]. 

 

 

2.5.2 Model Validating 

 

To prove the validity of the model selected by the indication of the goodness-of-fit tests as 

best, we will carry out a hypothesis test with the following hypothesis 

 

Null hypothesis (𝐻0): the best model is valid if its p-value is greater than the level of 

                                   significance 𝛼. 
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Alternative hypothesis (𝐻𝑎): the best model is not valid if its p-value is less than the level of 

                                                significance 𝛼. 

 

In this paper, we will use the standard level of significance 𝛼 = 0.05.  

We will again proceed with Calderin-Ojeda and Kwok (2015) approach of determining the p-

value using the bootstrap procedure in the following order: 

 For the model selected as a better fit to the data using methods in section 2.5.1, 

calculate the goodness-of-fit test statistics 𝑡𝐾𝑆, 𝑡𝐶𝑣𝑀 and 𝑡𝐴𝐷, 

 Using the model providing a better fit to data 𝑥1, 𝑥2, … , 𝑥𝑁, 

   - generate M sets of resampled data and denote them as 𝑥̂1
(𝑖)
, 𝑥̂2
(𝑖)
, … , 𝑥̂𝑁

(𝑖)
 for 

      𝑖 = 1, … ,𝑀. 

   - refit it to each set of the resampled data and then compute the test statistics 

      𝑡𝐾𝑆
(𝑖)
, 𝑡𝐶𝑣𝑀
(𝑖)

 and 𝑡𝐴𝐷
(𝑖)

 for 𝑖 = 1,… ,𝑀. 

 Then, finally, determine the p-values by  

 

#{𝑖: 𝑡𝐾𝑆  
(𝑖)

≥  𝑡𝐾𝑆}

𝑀
,  
#{𝑖: 𝑡𝐴𝐷  

(𝑖)
≥  𝑡𝐴𝐷}

𝑀
 and 

#{𝑖: 𝑡𝐶𝑣𝑀  
(𝑖)

≥  𝑡𝐶𝑣𝑀}

𝑀
  

 

In section 3, the resampling will be done by taking 𝑀 = 1000. 

 

 

3.      Theoretical Applications to Insurance Claims Data 

 

The data for the applications is that of all automobile insurance claims made in 2016 for 

GAM insurance company. Claims were of two types: corporal claims and materials claims. 

Corporal claims are claims made on damages caused directly to persons’ bodies and material 

claims are claims made on damages caused to vehicles. The data had a total of 6499 claims 

made, from which 0.4% were corporal claims and 99.6% were material claims. 

The company had entered into a 2017 excess of loss non proportional reinsurance treaty with 

some of the characteristics being as follow: 

 Treaty priority = 10 000 000 DZD per claim amount (or event’s total claim amount) 

 Treaty ceiling: 

                    - unlimited for corporal damages 

                    - limited to 150 000 000 DZD for material damages. 

 

3.1 Composite Lognormal Model Fitting to Data 

We made available seven candidate composite lognormal models for fitting to data: 

Lognormal-Pareto, lognormal-burr, lognormal-inverse paralogistic, lognormal-paralogistic, 
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lognormal-loglogistic, lognormal-inverse pareto and lognormal-inverse burr. When, for 

example, the tail part of the distribution (modelling large claims) was to be modelled by 

Pareto distribution, the composite lognormal model became composite lognormal-Pareto 

(LPC) probability distribution model. 

The fitting, basically, produced the estimated parameters (whose exponentials are the values 

put in table 3.1) and the negative log-likelihood (NLL) of which (–NLL) was used to 

calculate the Akaike Information Criterion (AIC) [2]. Latter, we calculated the KS, CvM and 

AD test statistics to aid in the selection of a model providing a better fit as we could not 

entirely rely on AIC. 

 

    Goodness-of-fit Test Statistics 

Model Parameters Estimated 
Parameters 

AIC KS CvM AD 

Lognormal- 
Pareto 
(LPC) 

𝛽 
𝜃 

0.7181631 
10233.05 

143141.2 0.1288046 22266.22 198.393 

Lognormal- 
Burr  
(LBC) 

𝜎 
𝜃 
𝛼 
𝛽 
𝑠 

1.117488 
17714.93 
0.03118409 
51.30768 
16627.52 

141001.1 0.06464014 1327.889 22.9029 

Lognormal-
Inverse 
Paralogistic 
(LIPaC) 

𝜎 
𝜃 
𝜏 
𝑠 

0.8050095 

37399.35 

1.610152 

1.754455 

141236.2 0.2708801 32411.05 360.5476 

Lognormal-
Paralogistic 
(LPaC) 

𝜎 
𝜃 
𝛼 
𝑠 

0.80475 
37335.19 
1.267696 
0.2210377 

141236.2 0.06385445 379.0071 27.40241 

Lognormal-
loglogistic 
(LLC) 

𝜎 
𝜃 
𝛾 
𝑠 

0.8056159 

37384.58 

1.605893 

5.182061 

141236.2 0.06411453 396.6818 27.56333 

Lognormal- 
Inverse 
Pareto 
(LIPC4) 

𝜎 
𝜃 
𝛼 
𝑠 

0.7786674 

21911.52 

0.2620021 

0.0947796 

141647.4 0.08487503 10560.21 86.81077 

Lognormal– 
Inverse 
Burr 
(LIBC) 

𝜎 
𝜃 
𝜏 
𝛾 
𝑠 

0.8059115 
37448.29 
13.68639 
1.607251 
0.2197676 

141238.2 0.06419904 410.3249 27.59355 

 

Table 3.1: Fitting Composite Lognormal Probability Distribution Models to Insurance 

                   Claims 
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We take note that the lognormal-burr(𝐿𝐵𝐶) model produces the smallest value of AIC, hence, 

we conclude that it has been classified first. And the AD test statistic supports that it should 

be considered as a model providing a better fit to the insurance claims data despite the KS 

and CvM test statistics having gone for lognormal-paralogistic (𝐿𝑃𝑎𝐶). 

 

 

3.2 Testing the Validity of 𝐿𝐵𝐶 and 𝐿𝑃𝑎𝐶 Models 

 

The validity of each model will be tested based on the hypotheses 

𝐻0: 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 𝑖𝑓 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≥  𝛼 = 0.05 

𝐻𝑎: 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑎𝑙𝑖𝑑 𝑖𝑓 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  𝛼 = 0.05 

Where 𝛼 = 0.05 is a level of confidence which means that of all the calculations we will make, we 

have a chance of 1 − 𝛼 = 0.95 that they are going to be correct with a chance of 𝛼 = 0.05 that they 

are incorrect if the hypothesis 𝐻0 is accepted. 

As shown in section 2.5.2, the p-values will be determined in terms of 𝐾𝑆, 𝐶𝑣𝑀 and 𝐴𝐷 test 

statistics using the bootstrap method where 𝑀 = 1000. 

 

 p-values 

Model KS CvM AD 

Lognormal-Paralogistic 
(LPaC) 

0.702 0.544 0.593 

Lognormal- 
Burr  
(LBC) 

0.643 0.497 0.628 

 

Table 3.2: p-values of best fitting Composite Lognormal Models 

 

We take note that all the p-values being above 0.05 signifies that all the two models have 

been accepted as being valid.  

 

 

3.3 Incorporating LBC into the PH-transform Principle 

 

Although both the lognormal-burr and the lognormal-paralogistic qualify as models giving a 

better fit to data, we opt to use the lognormal-burr in the reinsurance premium principle (12) 

and (13) because it would take much more space if we used all the two. Also, some other 

reasons are given in section 4 for the preference of lognormal-burr to lognormal-paralogistic. 
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Using cumulative distribution function (9), we take 𝐹1(𝑥) = Φ(
𝑙𝑛𝑥−𝜇

𝜎
), where 𝜇, 𝜎 > 0, as a 

cumulative distribution function for lognormal and we take 𝐹2(𝑥) = 1 − (1 + (
𝑥
𝑠⁄ )
𝛽)−𝛼, where 

𝛼, 𝛽, 𝑠 > 0, as a cumulative distribution function for lognormal for burr. Consequently, we have a 

cumulative distribution function for composite lognormal-burr probability distribution model given by 

𝐹(𝑥) =

{
 
 

 
 

1

(1+𝜙)

Φ((𝑙𝑛𝑥−𝜇) 𝜎⁄ )

Φ((𝑙𝑛𝜃−𝜇) 𝜎⁄ )
 , 𝑠𝑖 0 < 𝑥 ≤ 𝜃

1 −
𝜙

1+𝜙
(
1+(

𝜃

𝑠
)
𝛽

1+(
𝑥

𝑠
)
𝛽)

𝛼

 , 𝑠𝑖 𝜃 < 𝑥 < +∞
                                              (14) 

 

The reinsurance premium formula, using the PH-transform principle, is determined by, 

Π𝑟(𝑅) = ∫ (𝑆(𝑥))
1

𝑟
+∞

𝑅
𝑑𝑥 = (

𝜙

1+𝜙
)
(
1

𝑟
)
∗ (1 + (

𝜃

𝑠
)
𝛽
)
(𝛼 𝑟⁄ )

∗ ∫
1

(1+(
𝑥

𝑠
)
𝛽
)

𝛼
𝑟⁄

+∞

𝑅
𝑑𝑥, for  𝜃 < 𝑅,        (15) 

provided, of course, that 𝑆(𝑥) = 1 − 𝐹(𝑥) =
𝜙

1+𝜙
(
1+(

𝜃

𝑠
)
𝛽

1+(
𝑥

𝑠
)
𝛽)

𝛼

, 𝑤ℎ𝑒𝑟𝑒  𝜃 < 𝑥 < +∞. 

The integral in formula (15) exist if and only if 1 ≤ 𝑟 < 𝛼 ∗ 𝛽. Nadarajar and Bakar (2012) 

show that the parameters μ and ϕ can be calculated from the other estimated parameters by 

𝜇 = 𝑙𝑛𝜃 + 𝜎2 + 𝜃𝜎2
𝑓2
′(𝜃)

𝑓2(𝜃)
 and 𝜙 =

(𝜃𝛽+𝑠𝛽)𝜓[(𝑙𝑛𝜃−𝜇) 𝜎⁄ ]

𝜎𝛼𝛽𝜃𝛽Φ[(𝑙𝑛𝜃−𝜇) 𝜎⁄ ]
.  

 

Formula (15) is suitable for limitless guarantee case and in the case where the guarantee is 

limited, the reinsurance premium will be given by 

 

 

 

Π𝑟(𝑅) = ∫ (𝑆(𝑥))
1
𝑟

𝑅+ℎ

𝑅

𝑑𝑥 = (
𝜙

1 + 𝜙
)
(
1
𝑟
)

∗ (1 + (
𝜃

𝑠
)
𝛽

)

(𝛼 𝑟⁄ )

∗ ∫
1

(1 + (
𝑥
𝑠)

𝛽
)

𝛼
𝑟⁄

𝑅+ℎ

𝑅

𝑑𝑥 , 

𝑓𝑜𝑟 𝑟 ≥ 1 𝑎𝑛𝑑 𝜃 < 𝑅,                                                                                                                        (16) 

                                                                                        

where, of course, R is a treaty priority and h is a treaty guarantee [9]. 

Due to corporal claims under unlimited guarantee being 0.4% and material claims under 

limited guarantee being 99.6% of the whole claims, we decided to consider corporal claims 

conditions for reinsurance cover as negligible in the presence of those for material claims. As 

a result, formula (16), instead of formula (15), was used for premium calculations. The 

reinsurance premium computations using formula (16) were done numerically in R statistical 



13 
 

software [15], hence, one of the reasons as to why formula (16) was left without completing 

the integration. 

 

 

3.4 Reinsurance Premium Computations 

 

They have been computed at diverse values of retention 𝑅 and risk aversion index 𝑟. 

 Reinsurance Premiums 

 Risk Aversion Index 
 𝒓 =  𝟔. 𝟖  

Risk Aversion Index 
 𝒓 =  𝟕 

Risk Aversion Index 
 𝒓 =  𝟏𝟎. 𝟖 

Retention (Treaty 
Priority) R 

Reinsurance 
Premium  
(𝜫𝒓=𝟔.𝟖(𝑹)) 

Reinsurance Premium 
(𝚷𝒓=𝟕 (𝑹)) 

Reinsurance Premium 
(𝚷𝒓=𝟏𝟎.𝟖 (𝑹)) 

1 000 000 19 869 439 
 

21 030 169 41 637 318 
 

2 000 000 19 561 745 
 

20 711 946 41 161 331 
 

4 244 000 18 980 106 
 

20 107 452 40 202 598 
 

5 000 000 18 802 541 
 

19 922 384 39 898 947 
 

6 490 000 18 469 874 
 

19 575 158 39 319 291 
 

8 000 000 18 150 743 
 

19 241 536 38 751 796 
 

10 000 000 17 749 056 
 

18 820 999 38 023 887 
 

12 000 000 17 365 970 
 

18 419 392 37 317 382 
 

14 000 000 16 997 693 
 

18 032 873 36 628 193 

16 000 000 16 641 634 
 

17 658 818 35 953 489 

18 000 000 16 295 925 
 

17 295 329 35 291 199 

 

20 000 000 15 959 157 16 940 976 34 639 746 

 

 

Table 3.3: Reinsurance Premiums at diverse values of retention (R) and risk aversion index 

(r) 
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               Figure 3.4: Plots of Retentions and Reinsurance Premiums for 𝑟 = 6.8 and 𝑟 = 7 

 

 

 

4.      Evaluation 

 

Among the risk adjusted premium principles of Wang(1996b), we have chosen to use the PH-

transform principle because it provides for the treaty priority and treaty ceiling in the 

calculation of the reinsurance premium under the excess of loss non proportional reinsurance 

treaty [9], as can be seen in table 3.3. The PH-transform principle also provides for the 

possibility of adjusting the risk aversion index depending on whether the reinsurer anticipates 

the high or low risk on damage claims because the premium increases as the risk aversion 

index increases and vice versa as is shown by figure 3.4 and table 3.3. As is also shown in 

figure 3.4, the higher the treaty priority the lower the calculated PH-transform reinsurance 

premium [9]. Table 3.1 shows that the composite lognormal-burr model is best of the 

candidate models due to the smallest values of AIC and AD test statistic. And going by the 

KS and CvM test statistics, the composite lognormal-paralogistic model is being presented as 

the one providing the best fit to data. However, when we compare the KS test statistics for 

lognormal-burr and lognormal-paralogistic we see that there is very minimal difference 

which suggests that the KS could have favoured the lognormal-burr except that it is sensitive 

in capturing the behaviour of the model at the tail [7]. Having the possibility of lognormal-

paralogistic not being supported as the best of the candidate models does not make it an 

invalid model or lesser best fitting model as is evidenced by the p-values in table 3.2. They 

both can be just as best fitting models except that, also, going by the suggestions of the values 

of AIC and AD test statistic, and the high chance of the KS being not so reliable as to capture 

the models behaviour at the tail, we opted to use the lognormal-burr model in our reinsurance 
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premium formulae (15) and (16). Also, the possibility of some integrals not being able to 

exist for some composite models led us to leave the reinsurance formulae (15) and (16) in un 

integrated form in order for it to be solved by computing numerically.  

 

 

5.      Limitations 

 

The PH-transform principle though very desirable in the property of premiums adjustments 

because of the presence of the risk aversion index cannot be used in modelling and 

computations of reinsurance premiums for all reinsurance treaties. Reinsurance treaties such 

as the surplus proportional reinsurance treaty [10] and those that do not involve treaty priority 

would require a research of other premium calculation principles suitable for them. Also, 

despite the composite lognormal models having produced best fitting models from among 

them, there still stands a chance that other composite models, such those that would use 

Weibull instead of lognormal [2], would still produce a much better fitting model. Therefore, 

the composite lognormal-burr model having come out as best in this paper does not imply it 

is the best of any models that may be fitted to the given data. Only space in this paper and 

time has limited us from presenting other possible candidate models. 

 

 

6.      General Tools and Techniques 

For all the computations in this paper, we used the R statistical software version 4.1.0 [15]: 

The parameters were estimated by the optim function in collaboration with the dcomplnorm 

function of the CompLognormal package [12]. The negative log-likelihood (NLL) was part 

of the results gotten from the parameter estimation process and we manually calculated the 

AIC by incorporating the –NLL in the formula for AIC [2]. The seven probability 

distributions used to model the tail are of the family of transformed beta distributions that we 

got from the actuar package [2], [4]. The test statistics KS, CvM and AD were computed by 

programming their corresponding functions suitable for their computations. The p-values 

related to KS, CvM and AD test statistics were also computed by programming related 

functions for their computations using other functions such as sample and the already created 

functions for KS, CvM and AD test statistics. The numerical integration of the reinsurance 

premium formula (16) was done by using the integrate function. And the retention vs 

premiums figure was created using plot, lines and legend functions after programming a 

function which gives a number of reinsurance premiums given a number of retentions. 
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