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Abstract

In the social sciences, multi-item scales and factor analyses are standard tools in survey research. In the social sciences, such

tools are omnipresent, as are, unavoidably, nonresponses. The question is how to handle missing values when an exploratory

factor analysis is intended. Deletion methods will result in — oftentimes substantial and damaging — reduction of power. The

seemingly obvious alternative is to keep all respondents and apply imputation to missing values. However, with the true factor

structure unknown, theoretically recommendable multiple imputation methods cannot simply be applied. Instead of declaring

an entire method unsuitable for exploratory analysis, we propose an approach that keeps the relevant aspects of various methods

and combines these by sacrificing less relevant aspects. Doing so, we keep understanding and ease of use in mind, aiming for an

approach that is more rigorous and ‘correct’ than what is commonly used in practice, whilst still being straightforward enough

to actually be used.
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Missing values in exploratory factor analysis 
A ‘best of all possible worlds’ approach to imputation 

for incomplete survey data 
 
 
Abstract. In the social sciences, multi-item scales and factor analyses are standard tools in 
survey research. These tools are omnipresent, as are, unavoidably, nonresponses. The question 
is how to handle missing values when an exploratory factor analysis is intended. Deletion 
methods will result in — oftentimes substantial and damaging — reduction of power. The 
seemingly obvious alternative is to keep all respondents and apply imputation to missing 
values. However, with the true factor structure unknown, theoretically recommendable 
multiple imputation methods cannot simply be applied. Instead of declaring an entire method 
unsuitable for exploratory analysis, we propose an approach that keeps the relevant aspects of 
various methods and combines these by sacrificing less relevant aspects. Doing so, we keep 
understanding and ease of use in mind, aiming for an approach that is more rigorous and 
‘correct’ than what is commonly used in practice, whilst still being straightforward enough to 
be used. 

 
Keywords. Imputation, missing data, survey, exploratory factor analysis. 
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1 Introduction 

The process of theory building iteratively cycles through two major stages, which 

Christensen and Carlile (2009) refer to as the descriptive and the normative. In the quantitative 

Popperian tradition, this translates into the descriptive stage providing us with constructs, 

frameworks, and models through observation, categorization, and association, which 

eventually result in hypotheses and their subsequent testing in the normative stage. Formulating 

these hypotheses, researchers focus on the expected relationships between constructs and how 

the (differences between) attributes of frameworks correlate with the outcome variables of 

interest.  

In this descriptive stage of theory building, applied social scientists often use surveys, 

(partly) consisting of Likert scale items, as measurement instrument. Subsequently studying 

the data thus collected for possible underlying structure is most often performed by means of 

exploratory factor analysis (EFA) (see, e.g., Auerswald & Moshagen, 2019; Bandalos & 

Boehm-Kaufman, 2009; Fabrigar et al., 1999). Other salient characteristics of the descriptive 

stage of theory building in applied social science tend to be small sample sizes and missing 

data. In what follows, we will call this specific combination of characteristics (small sample of 

survey data plagued with missing values on which the researcher wants to perform EFA) the 

exploratory context of applied social science research, and provide practical guidelines in 

dealing with its challenges.1 

Although all four characteristics of the exploratory context are extensively researched, 

much less attention has been given to their interdependencies and the challenges these present 

 

1  In practice, the descriptive and normative stages are often combined in a single study. Indeed, in theory-testing 
social science studies, we observe quite frequently the combination of a small sample size, missing values, 
and an exploratory element in measurement, when the to-be-tested theory includes a new construct for which 
a validated measure is not available in the extant literature. For the sake of the argument, we simply refer to 
‘the exploratory context,’ which captures any study jointly involving small sample sizes, missing values, and 
the use of EFA on survey data. 
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us with jointly. Without even trying to be exhaustive, there exist extensive literatures on survey 

data (e.g., Agresti, 2007), EFA and its variants (e.g., Jöreskog, 2007), required sample size 

(e.g., Price, 2017), and the treatment of missing data (e.g., Allison, 2002). Within these 

literatures, one can also find studies combining two characteristics – for example, 

recommendations on how to treat missing data specifically for survey data (e.g., Little, 1988; 

Rubin, 1987), or on (the determinants of) required sample size when performing EFA 

(MacCallum et al., 1999). However, far less common are studies addressing the small sample 

performance of missing data treatments. Whilst Roth et al. (1999, p. 230), more than two 

decades ago, already noted this lacuna in stating that “We strongly urge future research on 

varying sample sizes. [… as] we wonder if the quality of estimates of missing data would 

change for smaller Ns,” and similar calls to action have appeared in many studies since, this 

deficiency largely persists.  

Missing data treatments are commonly compared based on converged performance in 

large(r) samples, leaving out the potential differential performance under the typical small 

sample conditions of the exploratory context.2 Of the relatively few studies that do take the 

small sample conditions of missing data treatments into account, the predominant focus is on 

statistical concerns mostly relevant to theory testing, like bias and efficiency of estimated 

standard errors (e.g., Graham & Schafer, 1999; von Hippel, 2016) or the proper degrees of 

freedom that should be taken into account (e.g., Barnard & Rubin, 1999; Reiter, 2007). 

However, as McNeish (2017, p. 638) rightly points out, “EFA is rather unique in terms of 

analytic goals because it is one of the few prominent statistical methods where hypothesis 

testing is often not a central interest.” The applied social scientist in the descriptive stage of 

 

2  Newman (2014, p. 397) more recently observed that “More research would still be useful on a wide variety of 
imaginable boundary conditions under which the various missing data techniques might have different degrees 
of relative performance (e.g., […] small sample size conditions […]).” 



 5 

theory building is mostly interested in an informative and interpretable underlying structure 

that can guide and incite further research. Using EFA, the focus will be on extracting the proper 

number of factors and getting a feel for the strength of factor loadings far more than any formal 

testing. So, although the exploratory context is ubiquitous in practice and important in theory 

building, little is known about how to approach the key difficulty of missing data under its 

practical conditions of occurrence. As a result, we argue, current practices regarding the 

handling of missing values in the exploratory context are clearly suboptimal. 

The current article aims to address this deficiency. It will do so in a manner similar to 

Newman (2014), being a companion piece to the already existing high-quality reviews and 

recommendations of the separate characteristics of the exploratory context. It will add to 

current literature by specifically addressing the challenges stemming from the 

interdependencies of the characteristics of the exploratory context. The intention is not to be as 

statistically and methodologically exact as possible, but to offer a practical ‘best of all possible 

worlds’ approach that combines the strengths of various best practices into a way of working 

that is well within reach of applied social scientists. We suggest a compromise that takes 

current research practices, qualitative considerations, and statistical theory into account, and 

that nevertheless results in clear improvements in terms of the reliability and accuracy of 

research outcomes.  

In Section 2, the relevant aspects of the exploratory context are introduced. The 

ubiquity of small sample conditions will be illustrated, and the mechanisms of missing data 

and their most common treatments discussed. The challenges pertinent to the exploratory 

context will be explained, and our ‘best of all possible worlds’ approach proposed. Thereafter, 

Section 3 will set out the design and conditions of the simulation study by which our proposal 

and several likely alternatives are evaluated, followed by a discussion of the results in Section 

4. We discuss and conclude in the final Section 5. 
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2 The exploratory context 

Collecting primary data using survey methods is a very common practice for applied 

social scientists, both in the descriptive and normative stages of theory building. The rule of 

thumb in terms of required sample size for psychometric purposes seems to have become that 

200 suffices for most descriptive analyses, whilst reaching 500 or more respondents is strongly 

recommended (MacCallum et al., 1999).3 With an average response rate4 in organizational 

research of 52% (Anseel et al., 2010), collecting a sample of sufficient size can be challenging. 

On top of challenges related to the response rate, at least half of the respondents to surveys do 

not answer one or more questions (cf. King et al., 2001). How these missing data are dealt with 

is seen to greatly influence the resulting sample size, and thereby the accuracy and credibility 

of research outcomes. 

Reviewing over 800 articles in political science journals, King et al. (2001) find 94% 

of the studies dealing with missing data to do so by listwise deletion, possibly after partially 

replacing missing values by ‘educated guesses.’ The loss of information in doing so is, on 

average, about a third of the information collected. And although many studies have shown the 

harmful consequences of suboptimal missing data treatment (see, e.g., Newman, 2014; Peugh 

& Enders, 2004), ignoring everything but the full respondents is still popular in current research 

practice. 

Taking the prevalence of listwise deletion into account, it is hardly surprising that many 

studies that include a descriptive component, published in top-ranking outlets, are based on 

sample sizes smaller than recommended. Russell (2002), for example, investigated all articles 

appearing in the Personality and Social Psychology Bulletin over a three-year period, and 

 

3  Comrey and Lee’s (1992, p. 217) guideline is more fine-grained than the rule of thumb: “50 – very poor; 100 
– poor; 200 – fair; 300 – good; 500 – very good; ≥ 1000 – excellent.” 

4  Defined as (#partial respondents + #full respondents) / #contacted. 
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found that 27% of all articles explore underlying structures in survey data, of which 39% on 

sample sizes of 100 or smaller and another 23% on sample sizes between 100 and 200. Fabrigar 

et al. (1999), in their review of contributions to the Journal of Applied Psychology and Journal 

of Personality and Social Psychology, comparably found that 50% of the studies exploring 

underlying structure in survey data had sample sizes below 200, whilst Conway and Huffcutt 

(2003) report very similar statistics for organizational research outlets. 

As Newman (2014, p. 384) lucidly observes, “The prevalence of listwise deletion is 

attested by phrases of the following sort, which are regularly found in the Method sections of 

our top journals: ‘Out of 542 surveys returned, 378 provided usable data and were included in 

the analysis.’ The problem with this sort of statement is that it is inherently false. All of the 

respondents who provided data provided ‘usable data,’ but the researcher chose to throw away 

some of this precious information. Indeed, listwise deletion compounds the problem of sample 

nonresponse, by adding to it the extra problem that the researcher herself or himself creates 

additional missing data by discarding the partial respondents”. 

So, although sample size will remain a challenge in applied social science research, 

missing data treatment is arguably the most promising avenue of improvement.  

2.1 Missing data treatments 

We can clarify the missing data challenges and treatments in their different forms and 

shapes by introducing some notation. Let 𝑫 denote the data matrix. For a typical survey, this 

matrix consists of a row for each respondent and a column for each of the items. In the presence 

of missing data, 𝑫 has an observed and a missing part, denoted by 𝑫 = #𝑫!"#, 𝑫$%#%. The latter 
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concerns values that ‘exist’ (in a specific metaphysical sense), but are not observed.5 Also, let 

𝑹 be a matrix of identical dimensions to 𝑫 containing response indicators. That is, 𝑟%& is equal 

to 1 if 𝑑%& is observed, and equal to 0 if it is missing. 

The main missing data mechanisms can now be described in terms of our ability to 

predict the values of 𝑹 (King et al., 2001). Missing data is missing completely at random 

(MCAR) if 𝑹 cannot be predicted any better by making use of information in 𝑫. More formally, 

𝑹 is independent of 𝑫: ℙ(𝑹|𝑫) = ℙ(𝑹). This could, for example, happen if individuals make 

the decision to answer questions by flipping a coin, or if the missing data results from random 

errors in the software used. In practice, missing data will almost never be MCAR; rather, not 

answering a question is often related to some other characteristic in the survey (Graham, 

2009).6 

Missing data is missing at random (MAR) if 𝑹 cannot be predicted any better by 

making use of information in 𝑫$%#, but might be by using information in 𝑫!"#. That is, 

ℙ(𝑹|𝑫) = ℙ(𝑹|𝑫!"#). The probability of missing data on a variable is, under MAR, related 

to other variables on which data is collected, but not to the variable with the missing data itself. 

If, for example, young respondents do not answer questions on their preferred leadership style, 

this missing data is not related to the variable with missing data (preferred leadership style), 

 

5  Whilst some respondents might prefer to not disclose their income, they do have an income (positive, negative, 
or zero). This is what is meant by ‘exist’. If a survey contains specialist questions whilst also being conducted 
outside of the matching population of specialists, it may be the case that a missing value or a ‘don’t know’ 
answer does not signal a preference to not reveal the true existing value, but signals the question being 
inapplicable (Kroh, 2006). Assigning all respondents an opinion on every item (for example, by replacing 
missing values on questions that might be inapplicable to them) causes an underrepresentation of the less 
informed, and thereby introduces a bias. 

6  Whether or not missing data is MCAR can be tested for (see, for example, Jamshidian & Jalal, 2010). In 
practice, MCAR will almost always be rejected in favor of MAR/MNAR. Given its dependence on missing 
data, the presence or absence of MNAR can never be demonstrated based only on observed data. 
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but to another variable (age) on which data is collected. Its patterns of missingness can thus be 

predicted by making use of 𝑫!"#.7 

Finally, missing data is missing not at random (MNAR) if 𝑹 depends on both the 

observed and the missing part of 𝑫. That is, ℙ(𝑹|𝑫) does not further simplify and the 

probability of missing data on a variable is related, even after controlling for all other variables 

on which data is collected, to that variable itself. A classic example of MNAR would be high-

income individuals refusing to answer questions about income while simultaneously being 

unable to predict which individuals have high income based on all other data collected (King 

et al., 2001; Little & Rubin, 2014; Rubin, 1976). 

The extensive statistical literature on missing data (see, e.g., Allison, 2003; Little, 1988; 

Little & Rubin, 2014; Raghunathan et al., 2001) almost universally recommends maximum 

likelihood8 (ML) or multiple imputation (MI) as optimal treatment. The consistency of these 

recommendations over the past five decades and the weight of evidential support 

notwithstanding, an implementation gap versus current research practices of many applied 

social scientists persists. To further assist researchers in identifying and applying missing data 

treatments, and to bridge the implementation gap, excellent reviews (e.g., Enders, 2010; 

Newman, 2009; Schafer & Graham, 2002) and practical guidelines “offering a set of 

compromised standards that are midway between current research practice (e.g., in which 

listwise and pairwise deletion are routinely implemented) and statistical best practice” 

(Newman, 2014, p. 397) have been made available, but to little avail. 

Although the practical guidelines are less strict than the statistical literature, “only 

recommending state-of-the-art missing data routines (ML and MI) be used in those instances 

 

7  The prediction requires no causality. If the response pattern in 𝑹 can be better predicted by making use of the 
information in 𝑫!"#, in any way whatsoever, the missing data is MAR. 

8  Full Information Maximum Likelihood (FIML) and Expectation Maximization (EM) are often recommended 
as exponents of the ML treatment of missing data. 
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when they are likely to make the biggest difference (e.g., when the percentage of respondents 

who are partial respondents >10%)” (Newman, 2014, p. 397), it is safe to say that the applied 

social scientist could never go wrong in applying the best practices, and is even recommended 

to do so in a substantial fraction of the practically relevant situations discussed (cf. Figure 1 in 

Newman, 2014). 

2.2 Guidelines and qualitative considerations 

Of the five major categories of missing data treatment, listwise deletion (LD) and single 

imputation (SI) are consistently rejected as valid alternatives in both the statistical literature 

(e.g., Rubin, 1987) as well as practical guidelines, on grounds ranging from inefficiency and 

bias (Newman & Sin, 2009) all the way to ethics (Rosenthal, 1994).9 The two most important 

practical guidelines of Newman (2014, p. 373), “use all available data (e.g., do not use listwise 

deletion)” and “do not use single imputation,” leave little room for interpretation and are, if 

possible, even more apt within the exploratory context. Simply put, if sample size is a challenge 

even when data would be complete, as tends to be the case in the exploratory context, any 

further reduction of sample size (e.g., through LD) decreases statistical power quite possibly 

to the point where valid conclusions can no longer be reached. Besides the reduction in power, 

disregarding information introduces bias for all practically relevant mechanisms of missing 

data (cf. Graham, 2009, p. 567).10 This might also be the case, but for different reasons, when 

 

9  “In sum, because listwise deletion often leads to extreme levels of inferential error (low power) and missing 
data bias (over- or underestimation of effect sizes), and because it is based on theoretically and ethically 
indefensible rationales, it should be avoided outright” (Newman, 2014, p. 384). 

10  As quantified by King et al. (2001), even under the idealized and practically less relevant condition of missing 
data being MCAR, the efficiency loss of using deletion methods is, on average, one standard deviation. That 
is, the point estimates reported in many applied social science studies are, on average, about one standard 
deviation farther away from their true population value due to the common practice of using deletion methods 
in addressing missing values. Under more realistic conditions concerning missing data mechanisms, the 
inefficiency will be more severe, and results will also be biased. 
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applying SI. Imputing, for example, a constant mean (across an item or respondent) 

downwardly biases the sample estimates of variance and correlation. Again aptly summarized 

by Newman (2014, p. 385), “the main reason to place a moratorium on single imputation is 

because multiple imputation has all of the advantages of single imputation, but none of its 

major drawbacks.” 

The remaining major categories of missing data treatments are pairwise deletion (PD), 

ML, and MI. The first of these calculates summary statistics based on all available data for 

pairs of variables. Within the exploratory context, where the summary statistic will most likely 

be the correlation matrix, each separate cell within the correlation matrix will thus be calculated 

using the observed cases for both variables involved.11 PD introduces bias under practically 

relevant missing data mechanisms (MAR and MNAR), results in inaccurate standard errors 

under all missing data mechanisms, presents a single measure of association that nevertheless 

is based on different subpopulations (each cell of the correlation matrix can be based on a 

different number of cases), and might result in correlation matrices that are not positive definite 

(Newman, 2009). As EFA requires positive definite correlation matrices, using PD as missing 

data treatment might result in non-convergence. Additionally, and from a more qualitative 

perspective, incorporating the missing data treatment into the process of estimating summary 

statistics is less transparent and intuitive. The applied social scientist is no longer explicitly 

partaking in the missing data treatment, but using a black-box estimation technique of which 

the inner workings and technicalities might very well be beyond her expertise. As this situation 

negatively affects the adoption of new practices (Greenwood et al., 2019), considerations like 

these should be taken into account if our collective aim is to close the implementation gap. 

 

11  As the correlation matrix is a scaled derivative of the covariation matrix, we’ll make use of both throughout 
the text. In the analyses performed, we consistently make use of correlation matrices. 
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A similar qualitative argument can be made when considering variants of ML as 

missing data treatment. FIML tries to maximally incorporate information from all observed 

data by allowing the dimensions of the mean and covariance matrix to vary for individuals (cf. 

Enders & Bandalos, 2001). It is a direct estimation technique that similarly incorporates the 

missing data treatment and withdraws it from the conscious considerations of the applied social 

scientist.12 In terms of converged performance in large(r) samples, FIML is expected to 

perform better than PD, and struggle somewhat less with non-convergence. It only introduces 

bias for MNAR (as all missing data treatments do), and results in accurate standard errors for 

all missing data mechanisms. 

MI is comparable to FIML in terms of converged performance in large(r) samples. It 

also only introduces bias for MNAR and results in accurate standard errors for all missing data 

mechanisms. In terms of qualitative considerations, however, MI treats missing data at the level 

of the data set. It consists of three stages: imputation, analysis, and pooling. In the first stage, 

𝑚 completed data sets are created by predicting each 𝑑%& for which 𝑟%& = 0. The observed 𝑑%&, 

for which 𝑟%& = 1, are the same in each of the 𝑚 completed data sets. The researcher thus ends 

up with 𝑫($) = #𝑫!"#, 𝑫($)
$%#%, where 𝑫($) are the 𝑚 completed data sets, and 𝑫($)

$%# are the 𝑚 

sets of predicted values for the missing data. In the second stage, the intended analysis is 

performed on each of these completed data sets. Denoting the quantity of interest of the analysis 

performed (like a matrix of factor loadings, a regression coefficient, or some other statistic) by 

 

12  Whilst EM is another popular ML variant commonly recommended, we focus on FIML. Both techniques are 
unbiased under practically relevant missing data mechanisms, but only FIML also has accurate standard errors. 
We furthermore see no advantages over FIML of earlier similar techniques focused on optimal estimation of 
the covariance or correlation matrix, like the nonlinear iterative partial least squares (NIPALS) estimation of 
Wold (1966) or the iterative principal components analysis (IPCA) method, that includes a single imputation 
of the missing data in its operation, of Kiers (1997). Many of these methods were shown to be prone to 
overfitting – a problem becoming more severe in the exploratory context. Versions including regularization 
parameters (e.g., Ilin & Raiko, 2010; McNeish, 2015) can control the problem of overfitting to some degree, 
but only through an extensive tuning of regularization parameters with which the applied social scientist might 
very well be unfamiliar and/or uncomfortable. 
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𝑄, each completed data set 𝑫$ ∈ 𝑫($) results in an estimate, 𝑄2$ = 𝑄2(𝑫$), and the estimate’s 

sampling variance	𝑈5$. In the third stage, the final inference is arrived at through pooling the 

𝑚 results. The MI point estimate, 𝑄6, is the average of the estimated quantities of interest on 

each of the 𝑚 completed data sets. The variance of 𝑄6 takes two sources of uncertainty into 

account. The first, denoted by 𝑈7, is the average of 𝑈5$ over the 𝑚 completed data sets. This is 

the average of the sampling variances of each of the estimated quantities of interest within each 

completed data set 𝑫$. The second source is the excess variance due to the missing data being 

imputed instead of observed (the variance between completed data sets): 

𝐵6 =
1

𝑚 − 1
:;𝑄2$ − 𝑄6<).
$

 

The total variance of 𝑄6 can then be expressed as: 

𝑇6 = 𝑈7 + @1 +
1
𝑚A𝐵

6,  

where the variance between completed data sets is multiplied by a factor that corrects for the 

fact that we have constructed a finite amount of completed data sets (Rubin, 1987). 

Being consciously involved in creating 𝑫($), MI closely aligns with the way of 

working applied social scientists are already familiar with. Furthermore, having multiple 

completed data sets that could have been observed, and agree on the data that is observed, quite 

intuitively represent both the presence of missing data and the inherent uncertainty of its 

treatment. 

In all, taking all considerations into account, MI seems to be the preferred missing data 

treatment for applied social scientists in the descriptive stage of theory building, expected to 

be closely followed by FIML. PD is expected to perform considerably worse. This is in sharp 

contrast with current practice, as the most popular current research practices of applied social 

scientists are LD and SI, which both address missing data at the level of the data set and 
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consciously create a ‘complete data set’ on which EFA is subsequently performed. But how 

would MI work out in a context where EFA is used subsequently? 

2.3 MI and EFA 

EFA is arguably the most widely used statistical technique in studying potential 

underlying structure of observed variables without a priori justification for a theoretical model 

(e.g., van der Eijk & Rose, 2015). In general terms, EFA conceptualizes each of the interrelated 

manifest variables observed as composed of a function of more fundamental quantities, called 

the systematic part, and an unrelated error. The systematic part, assumed to be a linear 

combination of latent variables that we do not observe, accounts for the interrelation in the 

manifest variables, in the sense that partialling the systematic part out by means of regression 

would remove all manifest partial covariation (Anderson, 2003).  

Denoting the manifest variables by a (𝑝 × 1) vector 𝒙, and the latent variables, or 

factors, by a (𝑞 × 1) vector 𝛟, EFA conceptualizes every manifest variable as: 

𝑥% = 𝜆%*𝜙* + 𝜆%)𝜙) +⋯+ 𝜆%+𝜙+ + 𝑢% ,												1 ≤ 𝑖 ≤ 𝑝, 

where 𝑢% is independent of all factors 𝜙*, 𝜙), … , 𝜙+ and all 𝑢& for which 𝑗 ≠ 𝑖 (Auerswald & 

Moshagen, 2019).13 The weights, 𝜆%&, of manifest variable 𝑖 to factor 𝑗 are called factor 

loadings. Figure 1 shows a path diagram for a common factor model in which two, possibly 

correlated, factors each account for the covariation in four manifest variables. The errors only 

determine item-specific variance, and are independent from both the factors and the errors of 

other manifest variables. 

 

13  To be precise, 𝑢$ is composed of a unique factor, specific to the manifest variable, and true measurement error. 
However, as we cannot distinguish between these components based on the survey data collected, we jointly 
refer to them as ‘error’ and think of the 𝑢$’s as the parts of the manifest variables not explained by the 
systematic part. 
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[Insert Figure 1 about here] 

Collecting all manifest variables, we end up with the following equivalent expression 

in matrix notation: 

𝒙 = 𝚲𝛟 + 𝒖,  

where the (𝑝 × 𝑞) matrix 𝚲 contains the factor loadings, and all error terms are included in the 

(𝑝 × 1) vector 𝒖. Assuming the error to be distributed with zero mean and diagonal (𝑝 × 𝑝) 

covariance matrix 𝚿, and the factors to be distributed with zero mean and (𝑞 × 𝑞) covariance 

matrix 𝚽, the (𝑝 × 𝑝) covariance matrix 𝚺 of the manifest variables can be written as:14 

𝚺 = 𝔼(𝒙𝒙,) = 𝚲𝚽𝚲, +𝚿.  

Intuitively, EFA thus tries to approximate the observed covariance matrix of the manifest 

variables, 𝚺, using a small set of 𝑞 factors.15 It operates on the covariation between survey 

items, trying to uncover a lower dimensional structure able to reproduce the observed 

covariation in manifest variables with as little loss of information possible. 

 In applying MI as missing data treatment when the intended analysis is EFA, the initial 

pre-processing performed in the first stage poses no challenges. Imputation can be performed 

with various prediction models (see, e.g., van Buuren, 2007; Schafer, 2002), fine-tuning the 

missing data treatment to the situation at hand. Whilst certainly beneficial, research has also 

shown the exact distributional details to contribute less to the soundness of the outcome than 

MI’s general process. Graham and Schafer (1999) and Schafer and Olsen (1998), amongst 

 

14  More formally, 𝔼(𝛟𝒖%) = 0, 𝔼(𝒖) = 0, 𝔼(𝒖𝒖%) = 𝚿,𝔼(𝛟) = 0, and	𝔼(𝛟𝛟%) = 𝚽. The factor structure is 
then said to ‘fit the 𝑞-dimensional common factor model’ when there exists a diagonal matrix 𝚿 with 
nonnegative diagonal entries such that 𝚺 −𝚿 is positive semidefinite of rank 𝑞. The matrices 𝚲 and 𝚽 are 
determined, in any solution, up to a rotation. In case the factors are furthermore orthogonal with unit variance, 
the approximation simplifies further to 𝚺 = 𝚲𝚲% +𝚿. For more elaborate explanations, see Anderson (2003) 
or Jöreskog (2007). 

15  Auerswald and Moshagen’s (2019, p. 468) statement that “EFA determines the underlying structure using a 
data-driven approach assuming a common factor model” is technically more accurate. Our focus is on EFA, 
but some of the statements concern the common factor model generally and are thus broader applicable. 
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others, have shown prediction models that assume the variables to be jointly multivariate 

normally distributed, an obvious approximation for survey data, to work almost as well as more 

sophisticated models specifically taking distributional assumptions for ordinal data into 

account. The improvements that can be realized versus the research practices of applied social 

scientists thus are, for the most part, related to the general use of MI as a three-staged process, 

and only secondarily to the sophistication of the prediction model used to create the completed 

data sets. Incorporating the inherent uncertainty of missing data treatment all the way to the 

parameter level, ideally only to be collapsed into a single point estimate at the stage of pooling, 

is key to (the performance of) MI. 

 However, for pooling to make sense, the estimated quantities of interest must be 

comparable. And to be comparable, the completed data sets should be analyzed using a single 

hypothesis. This hypothesis can be an assumed factor structure, like in confirmatory factor 

analysis (CFA), or a regression model, or some other structure, but it must be the same for all 

independent analyses on the 𝑚 completed data sets. Only if this condition is met will the 

estimated parameters be comparable, and can they be pooled to obtain a single point estimate 

𝑄6  and its total variance 𝑇6 . 

 EFA, however, has no single hypothesis. It commences without assuming any specific 

number of factors to be present and without having a clear-cut prior on factor structure. For 

each of the 𝑫$, a different estimated covariance matrix 𝚺5$ will result, possibly influencing 

the estimated quantities of interest and turning the subsequent pooling into comparing apples 

to oranges. More specifically, even when using the same approach to identify the number of 

factors that can be extracted, it cannot be guaranteed to give the same outcome for all 𝚺5$. 

Additionally, even if the identified number of factors would be the same, their order might not 

be. What we consider to be the first factor in the EFA performed on 𝚺5*, might very well be the 

second factor in the EFA performed on 𝚺5). In pooling the factor loading matrices of these 
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analyses, rather than properly taking the uncertainty of imputation into account, we would be 

averaging parameters related to different factors into a meaningless result. 

 The exploratory context thus confronts applied social scientists with a situation in 

urgent need of missing data treatment, and clearly recommending MI to do so. Due to 

interdependencies between the defining characteristics of the exploratory context, though, the 

largest part of the potential improvement, related to implementing MI’s three-staged process, 

seemingly cannot be realized. For the third stage (pooling) to be sensible, the second stage 

(analysis) needs to be performed based on a single hypothesis. Yet as both the number and 

order of extracted factors can vary for EFA performed on each of the completed data sets, EFA 

lacks a single hypothesis and seems to be incompatible with MI. 

2.4 Suggested solutions 

Given the strong expected benefits of MI, both quantitative and qualitative, and the 

popularity of EFA, there have been attempts to work around their incompatibility issues. Dray 

and Josse (2014), for example, suggested to circumvent the problems of not having a single 

hypothesis by collapsing the completed data sets into one before the second stage of MI. That 

is, after creating the 𝑚 completed data sets, these are collapsed into a single completed data set 

by averaging over 𝑚.16 

Although the missing data is treated at the level of the data set and multiple completed 

data sets that could have been observed are created, the resulting completed data set after 

averaging is not very intuitive. The averaged values of 𝑫!"# remain ordinal, but those of 𝑫($)
$%# 

become real-valued, turning the resulting averaged data set into a mix of observed values and 

values that could not even have been observed. One can furthermore question how well the 

 

16  Each 𝑑$& in the resulting data set thus is the average of the 𝑑$& in the 𝑚 completed data sets. 
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correlation matrix of this resulting averaged data set incorporates the uncertainty in covariation 

between items. The applied social scientist can indeed proceed with EFA as she is accustomed 

to, but the quality of the missing data treatment that collapses the uncertainty almost before the 

process of MI has started is questionable. Too much of MI might be sacrificed to save (the 

doing of) EFA.17 

At the other end of the spectrum, Josse et al. (2011) and Lorenzo-Seva and van Ginkel 

(2016) suggested to treat the problems of not having a single hypothesis by introducing an 

additional step into MI’s three-staged process aimed at increasing comparability. More 

specifically, they suggest to perform the first two stages of MI as one would in case of a single 

hypothesis, then post-process the outcomes of analysis using a rotation that is based on the 

generalized Procrustes rotation18 to make the matrices of factor loadings “as similar to one 

another as possible” (Lorenzo-Seva & van Ginkel, 2016, p. 599), and subsequently collapse 

the uncertainty in the third stage of pooling. 

There are several challenges with this suggestion. One cannot, for example, ascertain 

if ‘as similar to one another as possible’ is indeed similar enough to warrant the pooling stage 

of MI. Furthermore, what is known about the rotation that needs to be performed is described 

almost exclusively in highly technical outlets that might not be within reach of the applied 

social scientist. Related to this, existing implementations of the required rotation in software 

accessible to applied social scientist often still requires coding, and developing some intuition 

about the correctness of the results requires at least some understanding of the, quite 

 

17  Other, somewhat similar, suggestions ‘solve’ the challenges of MI by reverting back to SI. McNeish (2017, p. 
641), for example, notes and suggests: “One difficult issue to reconcile with the multiple imputation conditions 
was how to deal with replications in which the different imputations yielded a different number of factors. To 
combat this, because standard error estimates are not often a concern with EFA, we restricted the number of 
imputations to 1 across the multiple imputation conditions. Theoretically, the loading estimates should retain 
their asymptotically unbiased properties with only a single imputation.” 

18  See ten Berge (1977) and Lorenzo-Seva et al. (2002) for technical details. 
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demanding, underlying mathematics. More importantly, though, the actual doing of EFA has 

to be standardized to some extent to make this approach practically applicable. As Lorenzo-

Seva and van Ginkel (2016, p. 599) already mention: “It must be noted that the decision on 

how many 𝑟 factors to extract (one factor for each latent trait) has to be the same for the 𝐾 

copies of data.” With precisely the identification of the number of factors seen as (one of) the 

most important decisions to be made in the doing of EFA, fixing this beforehand can certainly 

be argued to be too restrictive, being disproportionate for what it makes possible in terms of 

treating missing data (cf. Auerswald & Moshagen, 2019; van der Eijk & Rose, 2015; McNeish, 

2017).  

Many applied social scientists will acknowledge the doing of EFA to be ‘part art, part 

science.’ Oftentimes, the researcher will be, for example, comparing outcomes in terms of 

factors to retain using many different criteria in combination with the domain expertise of the 

researcher herself. These will, most likely, come to different conclusions, and choices must be 

made along the way. The same goes for the type of rotation to use, possibly taking out cross-

loading items in iterations of achieving simple structure, checking the various goodness of fit 

and reliability statistics whilst making choices, and more. How this doing of EFA interacts with 

the rotation aimed at for maximal comparability is unknown. Each of the steps normally taken 

in an EFA process, will have to be conducted on all 𝑚 completed data sets, and the results can 

only ever be examined after the additional rotation, of which the effect remain largely 

unknown, and the subsequent pooling. So, although the applied social scientist can now 

perform the three-staged process of MI, plus an extra, technically demanding step, too much 

of the doing of MI is sacrificed to make this possible. 

With one suggested solution possibly sacrificing too much of MI to salvage the doing 

of EFA, and the other, we argue, sacrificing too much of EFA to salvage MI, is a combined 

solution possible that outperforms both? 
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2.5 Best of all possible worlds 

Whilst the possible combination of MI and EFA arguably offers the best of both worlds 

for the applied social scientist, the adaptation of the former to make it applicable in combination 

with the latter is very challenging. The representation of imputation uncertainty in the form of 

multiple completed data sets is very intuitive and should, ideally, be incorporated into as many 

stages of the MI process as possible. The second stage is pivotal in this regard. Staying true to 

the spirit of MI means EFA is performed on all 𝑚 completed data sets. However, this means 

an extra rotation needs to be performed that is both technically demanding, and has unknown 

effects on the typical doing of EFA and the many choices made along the way. 

If, rather, one aims for the doing of EFA, with all its subtleties and interdependent 

choices along the way, as the applied social scientist is used to and familiar with, this means it 

should be performed once on an estimated covariance matrix that incorporates and expresses 

the uncertainty of imputation as properly as can be. Averaging the completed data sets, 

however, was shown to result in a counterintuitive mix of observed ordinal values and real-

valued averaged imputed values that could never have been observed. 

The ‘best of all possible worlds’ approach we suggest, therefore, is the intermediate 

solution between averaging completed data sets and averaging artificially adapted matrices of 

factor loadings.19 That is, for each of the completed data sets 𝑫$, we estimate a covariance 

matrix 𝚺5$. Next, and in accordance with MI, we average these covariance matrices to obtain 

a single point estimate that properly incorporates the uncertainty of imputation: 

 

19  This approach was already suggested by Nassiri, Lovik, Molenberghs, and Verbeke (2018). Their argument, 
however, is mainly focused on estimating confidence intervals for the proportion of explained variance by the 
first 𝑘 factors, in combination with MI. The suggestion of averaging covariance matrices is offered almost as 
an aside and has not, as far as we are aware, been taken up by other researchers, neither in follow-up theoretical 
research nor in applied research. 
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EFA is performed on this point estimate in the manner familiar to applied social scientists, 

circumventing the issues of comparability as there is no pooling of multiple quantities of 

interest from separate EFAs. 

There also are no unknown effects of and possible interactions between common 

decision made in the doing of EFA, and a somewhat obscure rotation executed before pooling. 

Nor are there any problem regarding the ordering of the identified factors. Mature software 

implementations can be used in generating the completed data sets with a minimum of coding, 

all well within the quantitative operations applied social scientists are familiar with. The 

resulting 𝑫($) are all data sets containing values that could have been observed (ordinal 

values). The EFA, as a contextual conversation between the data collected and the (domain 

expertise of the) researcher, proceeds as it would when LD or SI would have been used. No 

observed values are disregarded, no information is thrown away, very few singularity issues 

emerge in the estimation of the covariance matrices due to the imputation of likely and possible 

values, and no bias is introduced that cannot be controlled by the number of completed data 

sets generated. This indeed seems to be the best of all possible worlds. 

There are, of course, downsides. Properly executing all stages of MI, without artificial 

interventions, like one can when performing a CFA, would be better still. Furthermore, 

working with a single collapsed covariance matrix on which EFA is performed precludes the 

application of pooling for precision purposes. However, given the (aims of the) exploratory 

context, the applied social scientist is, at this point in time, mostly interested in descriptive 

purposes. Possible inferences and formal tests that require precision are more common in later 

stages of research, possibly after additional data collection based on the outcomes of the 

exploratory stage. Although these thus are, from a methodological standpoint, shortcomings, 
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they might be less acute within the descriptive stage of theory building. Put differently, the 

benefits of our suggested approach are not in any way ‘for free,’ but do outweigh the problems 

introduced, offering a way forward that is both more rigorous and more sound, and as intuitive 

and easy-to-use as applied social scientist are used to. 

So, the question remains: how does this ‘best of all possible worlds’ approach perform 

under realistic conditions? It is this question we turn to now. 

3 Method 

The goal of the present study is to assess and compare the three major categories of 

missing data treatment (PD, ML, and MI) under realistic conditions for the exploratory context. 

For ML, we focus on FIML; for MI we include both the suggestion by Dray and Josse (2014) 

as well as our proposal. The former will be denoted as mean values (MV), as it collapses the 

completed data sets into one by directly averaging their values; the latter, our proposed ‘best 

of all possible worlds’ approach, we refer to as mean correlations (MC), as it collapses the 

correlation matrices of each of the completed data sets into one by averaging. With extensive 

simulation, we will compare the performance of these missing data treatments, focusing on the 

key aspects of the typical exploratory context oftentimes observed in applied social science. 

Specifically, controlling the experimental conditions, we create many data sets of which 

the statistical characteristics are known. For each simulated data set without missing data, 

variants with given percentages of missing data are constructed. Subsequently, the four missing 

data treatments under investigation are applied, and EFA is performed. Outcome measures 

relevant to the exploratory context are examined and the various missing data treatments are 

critically reviewed. 
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In what follows, we introduce the experimental conditions in the conceptual order of 

the simulation process.20 

3.1 Data generation 

Data sets were generated from a two-factor model.21 In accordance with the literature 

reviews mentioned in the Introduction, the number of respondents was set to 100, 160, and 

240, covering approximately the lower 50% of all comparable descriptive empirical studies. 

The number of items per factor was set to 4, 6, and 8, in accordance with the typical range of 

the majority of scales (cf. Fabrigar et al., 1999; Jackson et al., 2009). For each of the resulting 

nine unique combinations, 200 data sets were generated. To ensure variation in terms of 

statistical characteristics like spread of central tendencies and skew for the 200 data sets 

generated for a given number of respondents and items per factor, the sampling frequency for 

both respondents and items per factor was set to 5.22 

Assuming the population distributions defined over the factors to be, respectively, a 

normal distribution with mean 50 and standard deviation 20 (denoted by 𝒩(50, 20)), and a 

bimodal Gaussian mixture that draws with equal probability from 𝒩(25, 10) and 𝒩(75, 10), 

each of the generated respondents is characterized by a draw from each of the factor population 

 

20  An accompanying script file is provided as supplementary material that can be used for replication or, by 
adapting parameter settings, simulating different specifications. The description matches the sections of the 
script and can be read as a vignette. Furthermore, an additional script file is provided that illustrates the use of 
MC and can be adapted to fit the analysis needs of the applied social scientist. 

21  The most important settings were varied beyond the ranges mentioned. Sensitivity of the results to these 
additional specifications is discussed below. 

22  The 1,800 data sets generated using these settings collectively contain 300,000 respondents and 21,600 items. 
A sampling frequency of 5 means 60,000 respondents and 4,320 items are generated. On average, every 
generated respondent and item is included in 1 out of every 5 generated data sets. 
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distributions (cf. van der Eijk & Rose, 2015).23 Respondent 1 could thus, for example, be 

characterized by the tuple (68, 33), representing the positions on factors 1 and 2, respectively. 

Each item is characterized by a tuple of 𝑛 − 1 boundaries, with 𝑛 being the number of 

Likert categories. With 𝑛 set to 5, item 1 could thus, for example, be characterized by the tuple 

(21, 38, 51, 59) and item 2 by (32, 45, 61, 88). Together, a respondent and an item define a 

response. That is, if item 1 would be sampled from the items determined by factor 1, the 

response of respondent 1 would be 5.24 Similarly, if item 2 would be sampled from the items 

determined by factor 2, the response of respondent 1 would be 2. Taken together, a 

(60,000 × 4,320) matrix of five-point ordinal ‘true scores’ (in terms of classical test theory) 

results, where each row characterizes a respondent and each column an item (half determined 

by factor 1, and half by factor 2). 

These ‘true scores’ are then translated into observed data by adding errors in a manner 

preserving respondents’ positions on the factors, taking the smaller probability of larger errors 

into account, and maintaining both the discreteness and the ‘lumpy’ character of ordinal scores 

(van der Eijk & Rose, 2015). More specifically, for each cell in the matrix of ‘true scores,’ an 

independent random variable 𝑧	~	𝒩(0, 1) is drawn. The ‘true score’ is then corrected upwards 

or downwards according to the sign of 𝑧, taking the following cut-offs: no adjustment for |𝑧| ≤

1.2, adjustment of one for 1.2 < |𝑧| ≤ 2.2, adjustment of two for 2.2 < |𝑧| ≤ 3, and an 

 

23  In actual applied social science research, the population distribution of factors is, of course, unknown and 
unknowable. All the researcher has access to are the observed responses to survey items (including 
measurement error, missing values, and other deviations). 

24  Respondents characterized by positions on factor 1 smaller than 21 would answer 1, with positions of 21 or 
larger but smaller than 38 would answer 2, et cetera. Given that respondent 1 is characterized by a position of 
68 on factor 1, her answer to item 1 would be 5 (68 > 59). 
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adjustment of three for 3 < |𝑧| (all truncated to remain within the five-point response 

categories).25 

Finally, each of the 1,800 data sets without missing data is generated by randomly 

sampling rows and columns. A data set with 100 respondents and 4 items per factor would thus 

sample 100 rows (out of the 60,000), 4 columns out of the 2,160 determined by factor 1, and 

another 4 out of the 2,160 determined by factor 2. We refer to the resulting 1,800 data sets 

without missing data as the non-missing data (NMD), and assign a unique identifier to all. 

3.2 Missing data 

For each missing data percentage 𝑝 (10%, 20%, and 40%), another 1,800 data sets with 

MAR missing data are created by censoring.26 More specifically, for each data set in the NMD, 

half the columns are randomly assigned to be controls and matched to a column in which MAR 

missing values will be created. For each of these pairs of columns, the rows in the control 

column containing the 2𝑝 smallest values are identified, and missing values are created in these 

rows of the matched column. A (100 × 8) data set in which 10% MAR missing data is created 

thus has 20% missing values in four of its columns based on the values of the four other 

columns. 

 

25  In this manner, slightly less than one out of four ‘true scores’ will be adjusted. Furthermore, the resulting 
response data is realistic in that it resembles response distributions observed in actual surveys and 
demonstrates the often-ignored fact that the distribution of observed responses in no way indicates the 
population distribution of underlying factors. See Figures 2 and 3 in van der Eijk and Rose (2015) for a more 
detailed analysis and discussion. 

26  See Santos et al. (2019) and Rockel (2020) for more details. We focus on the more practically relevant MAR 
over the stylized MCAR. Whilst we recognize that nearly all missing data occurring in practice is somewhere 
in-between MAR and MNAR, our aim to suggest potential improvement of missing data treatments justifies 
the focus on MAR as MNAR requires the collection of additional later that is typical of later stages in the 
theory building process. 
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3.3 Imputation 

To each of the 5,400 data sets with missing data, the four treatments (PD, FIML, MV, 

and MC) are applied and correlation matrices are estimated (21,600 in total).27 For PD and 

FIML, the treatment is directly incorporated into the estimation.28 For MV and MC, the missing 

data is treated at the level of the data set. More specifically, for each of the 10,800 data sets of 

MV and MC, eight completed data sets 𝑫$ are created using a chained implementation of 

random forests (Breiman, 2001; van Buuren & Groothuis-Oudshoorn, 2011; Stekhoven & 

Bühlmann, 2012). An extra predictive mean matching step (using 10 candidates) is included to 

ensure ordinal predictions that are more attuned in terms of distributional properties. Each 

variable with missing data is imputed by predicted values from 100 random forests grown using 

all other observed data as covariables.29 

Recapitulating, for each of the 1,800 data sets with unique identifier in the NMD, three 

variants are created with different percentages of missing data. To each identifier we can thus 

link four data sets that differ for 𝑫$%#, but exactly agree on the observed 𝑑%& they happen to 

share. To each of these latter 5,400 data sets, four missing data treatments are applied that result 

in an estimated correlation matrix. The 7,200 data sets generated thus result in 23,400 

 

27  As ordinal scores can only be compared in terms of their ordering, covariation and correlation should be based 
on Spearman’s rank-order correlation, which can be understood as a nonparametric version of the more 
familiar Pearson product-moment correlation. Spearman’s rank-order correlation determines the strength and 
direction of monotonic relationships (not just linear). It can be used for variables measured on interval or ratio 
scales that violate (one of) the important, but often not explicitly checked, underlying assumptions of Pearson’s 
product-moment correlation. Ordinal data violates the assumed measurement on a continuous scale, meaning 
that association can only be measured by either Spearman’s correlation or the polychoric correlation 
coefficient (Pearson’s alternative). Although believed to be very different measures, they are not. The former 
can even be shown to be a deterministic transformation of the empirical version of the latter. As the polychoric 
correlation coefficient requires the factors to be continuous, Spearman’s rank-order correlation often is the 
slightly more appropriate measure of association. 

28  We try to solve non-convergence caused by singularity issues through the application of smoothing. More 
specifically, possible negative eigenvalues are made slightly positive whilst adjusting the other eigenvalues to 
compensate for the change. Reported convergence is after potential smoothing. 

29  See Mayer (2021) for specific implementation details. 
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correlation matrices; 1,800 for the NMD, and another 1,800 for each of 12 combinations of 

percentage missing data and missing data treatment applied.  

3.4 Outcome measures 

Many studies consider the identification of the number of factors to be the most 

important issue in EFA (e.g., Auerswald & Moshagen, 2019; van der Eijk & Rose, 2015; 

Larsen & Warne, 2010; Zwick & Velicer, 1986). Both under- and overestimating the number 

of factors has severe detrimental effects on research outcomes. The former, for example, causes 

significant errors in all factor loadings (Wood et al., 1996), whereas the latter can result in non-

parsimonious models that include constructs with little to none explanatory value, loadings that 

split on multiple factors after rotation, and even negative variance estimates (Fava & Velicer, 

1996). 

There are numerous methods to identify the number of factors. Arguably the most 

popular in current research practices of applied social scientists are the Kaiser-Guttman 

criterion (Guttman, 1954), the scree test (Cattell, 1966), and parallel analysis (PA; Horn, 1965), 

of which the latter has received the most support and is generally considered ‘best practice’(see, 

e.g., Hayton et al., 2004; Humphreys & Montanelli Jr., 1975; Schmitt, 2011). Given that we 

apply the same methods of factor identification across all experimental conditions, and that we 

are interested in the relative performance of various missing data treatments, the specific 

method chosen will not be a decisive factor for this study. 

For all 23,400 correlation matrices, we identify the number of factors using PA as well 

as a model selection perspective based on sequential model tests (SMT). In all instances, we 

use unweighted least squares (ULS) in estimation. For PA, we determine the eigenvalues of 

each of the correlation matrices after replacing the diagonal with squared multiple correlations, 

and compare these with the eigenvalues obtained from 1,000 random samples of the same 
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dimension consisting of uncorrelated variables. For the largest eigenvalue, we take the 95th 

percentile of the 1,000 largest eigenvalues from the random samples. For all other eigenvalues, 

we compare against the mean (Crawford et al., 2010). We refer to this method as PA_SMC. 

For SMT, we sequentially estimate factor structures with increasing number of factors. 

The number of factors identified is the smallest number for which the lower bound of the 90% 

confidence interval of the root mean square error of approximation (RMSEA) drops below 0.05 

(Preacher et al., 2013). The value of 0.05 as cut-off for close fit is based on Browne and Cudeck 

(1992), and comparable to the 0.06 of Hu and Bentler’s (1999) large-scale simulations. We 

refer to this method as SMT_RMSEA. 

The second outcome measure considered is the median factor loading bias. This 

measure is based on a comparison of each of the 12 combinations defined by the percentage 

missing data and the missing data treatment applied, to the NMD. To meaningfully interpret 

this outcome measure within the exploratory context, several steps need to be taken. Firstly, an 

EFA is estimated for each of the 1,800 correlation matrices of the NMD, each with the number 

of factors previously identified by PA_SMC as well as SMT_RMSEA. For all resulting 

estimated factor loading matrices 𝚲5, the factor loading largest in absolute value for each of the 

rows of 𝚲5 (i.e., each of the manifest variables) is determined and stored, including its original 

sign.30 We do so to limit the impact of the fact that the order of factors is not necessarily the 

same. Combined with a relatively ‘pure’ specification (observed variables determined by one 

factor, independent factors, average factor loading of around 0.75, no enforced cross-loadings 

or minor factors), we can be confident to capture the dominant loadings for all manifest 

 

30  In reference to Error! Reference source not found., determine max
𝑗
|𝜆𝑖𝑗| , ∀𝑖 and store the thus identified l

oadings without transformation (i.e., as 𝜆$&). 
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variables, especially for the NMD. Denote the resulting vectors of dominant loadings for the 

NMD by 𝒍-.31 

In the second step, we perform the same analysis on each of the 1,800 correlation 

matrices for the 12 combinations of missing data percentage and treatment applied. Denote the 

resulting vectors by 𝒍$. Finally, in step 3, we calculate, for each of the 12 combinations, the 

absolute difference between that combination’s 𝒍$ and 𝒍-. Of the resulting 1,800 vectors of 

absolute factor loading differences per combination, we take the median to end up with 1,800 

values of the median factor loading bias for each of the 12 combinations. 

3.5 Sensitivity analysis 

We extensively explored the sensitivity of the results discussed below to changes in the 

experimental conditions. For one, data was also generated from one-, three-, and four-factor 

models, also using, in various permutations and in addition to the population distributions over 

factors already mentioned, a uniform 𝑈(0, 100) and a beta 𝛽(2, 5) distribution scaled to the 

interval (0, 100) (van der Eijk & Rose, 2015). In terms of percentages missing data, both 

smaller percentages (e.g., 2%, 5%, and 8%) and percentages in-between the main values of 

10%, 20%, and 40% were examined (e.g., 12%, 15%, and 18%).  

Furthermore, numbers of items per factor larger than eight were tested to mimic the 

phase in scale development before the elimination of indicators (Auerswald & Moshagen, 

2019). Also, both smaller (e.g., 40, 60, and 80) and larger (e.g., 300, 400, and 500) numbers of 

respondents were examined. The number of replications was varied between 50 and 250, the 

 

31  Given the number of items per factor and the fact that data is generated by a two-factor model, the vectors 𝒍) 
are of dimensions 8, 12, and 16 (600 of each). 
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number of completed data sets32 𝑫$ between 5 and 20, the number of candidates considered 

in the PMM step of imputing predicted values between 5 and 10, and the number of trees grown 

between 50 and 250. Simulations were also run with seven rather than five-point ordinal scores, 

and with smaller sets of respondents and items to be sampled from in constructing the data sets. 

Although the various sensitivity settings tested all had their effects, they were, generally 

speaking, minor. None of them necessitated a reconsideration of our main conclusions, as 

presented below. Where relevant, the outcomes of the sensitivity analyses will be discussed in 

what follows. All detailed sensitivity analyses are available upon request. 

4 Results 

4.1 Factor identification 

For the experimental conditions introduced in the previous section, Table 1 shows an 

overview of the main results in terms of factor identification. The top row, based on the 1,800 

correlation matrices of the NMD, reveals that both PA_SMC and SMT_RMSEA converged in 

all instances, and identified the correct number of factors in, respectively, 73% and 58% of 

these converged instances. For all outcomes reached that did not identify the correct number 

of factors, the average deviation was, respectively, 0.32 and 0.53 factors. Notwithstanding the 

challenging conditions of the exploratory context, both methods perform reasonably well, with 

PA_SMC even correctly identifying a two-factor model for 1,314 of the correlation matrices, 

being, on average, only 0.32 factor off for the remaining 486. 

[Insert Table 1 about here] 

 

32  For many practically relevant situations, a small number of 3–10 completed data sets suffices when using 
chained equations (van Buuren, 2007). 
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 PD and FIML can be seen to struggle, even in terms of convergence, for missing data 

percentages of 10% and higher. On top of that, both treatments far less often identify the correct 

number of factors in this already smaller set of converged outcomes. And, when identifying an 

incorrect number of factors, both are significantly further off the mark. This can also be seen, 

quite dramatically, in the boxplots of Figure 2. 

[Insert Figure 2 about here] 

In contrast, by treating missing data at the level of the data set through imputation, the 

convergence of both MV and MC remains high.33 Adding to that, moreover, the fraction of 

correctly identified number of factors within these converged outcomes also remains 

significantly higher. 

Combined, these results clearly show the outperformance, in the exploratory context, 

of both MV and MC when it comes to the important aspect of identifying the number of factors. 

Compared to one another, MC is the better missing data treatment. Even for high percentages 

of missing data, MC not only results in high convergence, but correctly identifies the number 

of factors for a fraction of converged outcomes close to the results for the NMD. And when it 

does not correctly identify the number of factors, its absolute deviation, on average, also 

remains close to the results for the NMD. 

 Although we are mainly interested in the relative performance of missing data 

treatments within the exploratory context, the results of SMT_RMSEA after MC has been 

applied are worth noticing. Instead of a performance slightly worse than the benchmark and 

dropping off for higher percentages of missing data, MC’s performance is better than the 

 

33  There might, of course, still be instances of, for example, an entire column of a completed data set having the 
same value and thus zero variance. For MC, we decided not to work around these issues. For this example, it 
would mean that one of the eight correlation matrices cannot be estimated. Instead of disregarding the one 
problematic completed data set and using the other seven (or generating additional instances), as one would 
probably do in practice, we allow this issue to result in a non-convergence for that entire correlation matrix. 
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benchmark and increasing when conditions worsen. This effect disappears for higher ratios of 

respondents to items per factor, but is consistently present in many conditions relevant to the 

exploratory context.34 

 Corroborating Newman’s (2014, p. 384) observation that, under conditions of relatively 

low percentages of missing data, “pairwise deletion might be similarly as accurate as a state-

of-the-art (ML or MI) technique,” Table 3 shows that the performance of PD (and FIML) is 

indeed markedly better for lower percentages of missing data. Importantly, however, now 

having investigated the specific challenges of the exploratory context, we can extend 

Newman’s insights for the small sample conditions he mentions as topic for further research. 

Simply put, although low missing data percentages indeed make the performance of PD in 

terms of identifying the number of factors comparable to MC, the latter is, even in these 

conditions, the overall better choice. Under conditions more representative of the reality 

applied social scientists face in the descriptive stage of theory building, where double digit 

percentages of missing data are endemic, the advantage of MC only becomes larger. 

[Insert Table 3 about here] 

4.2 Factor loading bias 

Table 4 shows the performance in terms of median factor loading bias. First of all, the 

convergence numbers reported indicate that correlation matrices resulting in convergence for 

the number of factors identified, nearly always also converge for EFA. 

[Insert Table 4 about here] 

 

34  As can be seen in Table 2 of the supplementary material contained in the appendix, the effect is no longer 
present for data sets consisting of 500 respondents and 4 items per factor (100 replications). 
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If we exclude the combinations of missing data percentage and treatment that reach an 

outcome for only a very small fraction of correlation matrices (PD and FIML for 40% missing 

data), we can collect the data sets for which all remaining combinations reach an outcome. 

Denote this collection of data sets by 𝒞. Compared to the outcomes reached on the NMD, and 

with the number of factors identified by PA_SMC, the median factor loading, on average and 

within 𝒞, deviates 0.083 for 20% missing data and PD as missing data treatment. With an 

average factor loading magnitude of 0.75, half of the factor loadings thus approximately lie 

outside of the interval [0.67, 0,83]. For MV (0.041) and MC (0.035) the comparable factor 

loading bias is less than half that of PD. FIML (0.057) performs better than PD, but 

significantly worse than MV and, especially, MC.35 

For lower percentages of missing data, as Table 6 reveals, the performance of PD, this 

time in terms of factor loading bias, again improves and surpasses that of FIML. And whilst it 

could be argued that convergence and factor loading bias, for the condition of 2% missing data, 

qualify PD for the ‘similarly as accurate’ category, MC again remains the better choice. 

Combined with the qualitative advantages, and the knowledge that PD’s performance will 

deteriorate for slightly higher percentages of missing data, MC remains ‘best of all possible 

worlds.’ 

[Insert Table 6 about here] 

Percentages of missing data common to the exploratory context, but combined with 

higher numbers of respondents (300, 400, and 500) see the performance of PD dropping below 

that of FIML. As Table 7 reveals, the comparative advantage for MC increases for larger 

number of respondents. 

[Insert Table 7 about here] 

 

35  The same conclusion is reached if the outcome measure is based on SMT_RMSEA as method for factor 
identification. See Table 5 of the supplementary material contained in the appendix. 
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Whereas Table 4 (based on 100, 160, and 240 respondents) indicated a factor loading 

bias for MV that is slightly lower than that of MC for the condition of 40% missing data, Table 

7 (based on 300, 400, and 500 respondents) shows MC performing universally best.36 

5 Discussion and conclusion 

Applied social scientists, including organizational researchers, frequently engage in 

theory building. In doing so, many are confronted with situations typified by four salient 

characteristics: survey data (partly consisting of Likert items), small sample sizes, missing data, 

and an initial research aim involving the identification of possible underlying structure by 

means of EFA. Although this exploratory context is ubiquitous, little is known about how to 

best deal with the challenges the interdependencies of these salient characteristics jointly 

present us with. 

With missing data treatment arguably the most promising avenue of improvement, we 

must have a clear understanding of the small sample performance of missing data treatments, 

as well as their compatibility with, and effect upon, EFA. This clear need, voiced by many over 

the years, notwithstanding, we have seen very few studies investigating the practicalities of the 

exploratory context. 

In addressing this deficiency, the present study investigated the performance of the 

major categories of missing data treatments under conditions relevant to the exploratory 

 

36  Conditions must become quite extreme for MC to not come out on top. For example, analyzing the 
performance based on 40, 60, and 80 respondents, well below the already problematic sample sizes analyzed 
for the exploratory context, we see MC struggling for the condition of 40% missing data. As can be seen in 
Table 8 and Table 9 of the supplementary material contained in the appendix, the convergence, number of 
factors identified, and factor loading bias, especially for SMT_RMSEA, performs worse than MV. The drop 
in performance between the conditions having less than 40% missing data, for which MC still performs best, 
and the condition of 40% missing data seems to indicate we’ve reached the limit of our harsh treatment of MC 
in terms of completed data sets not translating into proper correlation matrices. 
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context. In addition to the most promising missing data treatments already in use, we suggest 

a ‘best of all possible worlds’ approach that combines the strengths of various best practices 

into a way of working that is well within reach of applied social scientists. More specifically, 

our proposed approach uses as much of the expected strong benefits of the most recommended 

missing data treatment, MI, without compromising the doing of EFA as applied social scientists 

are accustomed to. It represents both the presence of missing data and the uncertainty of their 

treatment in an intuitive manner by creating multiple completed data sets. Instead of averaging 

these, or ignoring all but one of them, the ‘best of all possible worlds’ approach estimates 

correlation matrices for each of them, and collapses these into a single correlation matrix 

through averaging. Maintaining the benefits of an intuitive representation, incorporating the 

uncertainty into as many steps of the MI process as possible, and preventing intransparent 

operations to force factor loading matrices into a similarity that cannot be properly evaluated, 

the proposed approach closely aligns with applied social scientists’ familiar way of working 

and, as such, offers the best possibility of closing the implementation gap between current 

suboptimal research practices and best practices recommended by the statistical literature. 

As our quantitative results indicate, the ‘best of all possible worlds’ approach 

outperforms the most viable alternatives. Both in terms of identifying the number of factors 

required to adequately describe the covariation in the observed data, as well as in terms of the 

bias in factor loadings. Furthermore, it does so consistently within conditions relevant to the 

exploratory context, but also proves to be remarkably robust outside of these conditions. 

It goes without saying that additional research on a wide range of choices and 

assumptions made is necessary. A better understanding of the boundary conditions of 

performance across a range of conditions outside of the exploratory context, and the unique 

strengths under particular conditions of various methods, like those identifying the number of 

factors, and their interdependencies, being chief among them. 
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All considering, though, we deem the ‘best of all possible worlds’ approach to have the 

greatest potential to change a common and, unfortunately, highly suboptimal practice within 

applied social science for the better. Adopting it will, we believe, pose no great difficulties for 

applied social scientist, whilst substantially increasing the quality of their work. The reliability, 

credibility, and accuracy of research outcomes will improve through the avoidance of 

information loss, without the need to significantly change the way of working or having to use 

technically demanding and intransparent methods. 
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Figure 1: Path diagram for a common factor model with two, possibly correlated, factors (𝜙!, 𝜙") 
determining the covariation in eight observed variables (𝑥!, … , 𝑥#). Error terms (𝑢!, … , 𝑢#) are independent 
from both the factors and the error terms of other observed variables. Arrows from the factors to the 
observed variables represent the factor loadings 𝜆$%. 
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Table 1: Overview of identified factors for Parallel Analysis using Squared Multiple Correlations (PA_SMC), and 
Sequential Model Tests based on the lower bound of the 90% confidence interval of the Root Mean Square Error of 
Approximation (SMT_RMSEA). The leftmost column has a row for the correlation matrices based on NMD (‘complete’), 
and rows for all combinations of percentages missing data (10%, 20%, and 40%) and missing data treatment (PD, FIML, 
MV, and MC). The numbers in each of the rows are based on 1,800 correlation matrices (23,400 in total). Converged is the 
fraction for which outcomes are reached. Correct is the fraction of converged outcomes identifying the correct number of 
factors. Mean AD is the average absolute deviation, in number of factors, of converged outcomes identifying an incorrect 
number of factors. 
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Figure 2: Distributional characteristics of the number of factors identified using SMT_RMSEA. Each line is based 
on the converged outcomes for 1,800 correlation matrices. The line to the left-hand side of the gap indicates the range of values 
below the 25th percentile (lower extremes). The gap itself represents the IQR, the range from the 25th to the 75th percentile. The 
dot represents the median, and the line to the right-hand side indicates the range of values above the 75th percentile (higher 
extremes). For the data sets without missing data, the 25th percentile and the median both equal two. There were no instances 
for which one factor was identified. The 75th percentile equals three, and the highest extreme equals five. PD and FIML have 
median values of four and identify up to ten factors. Convergence for 40% missing data is very low for both treatments. MV 
has median values of three and deteriorating results for increasing percentages of missing data. MC correctly has median values 
of two and actually improves for increasing percentages of missing data. 
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Table 2: Overview of identified factors for PA_SMC and SMT_RMSEA on data sets consisting of 500 respondents 
and 4 items per factor. The numbers in each of the rows are based on 100 correlation matrices (1,300 in total). Converged is 
the fraction for which outcomes are reached. Correct is the fraction of converged outcomes identifying the correct number 
of factors. Mean AD is the average absolute deviation, in number of factors, of converged outcomes identifying an incorrect 
number of factors. 
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Table 3: Overview of identified factors for PA_SMC and SMT_RMSEA. Percentages of missing data equal to 
2%, 5%, and 8%. The numbers in each of the rows are based on 900 correlation matrices (11,700 in total). Converged is the 
fraction for which outcomes are reached. Correct is the fraction of converged outcomes identifying the correct number of 
factors. Mean AD is the average absolute deviation, in number of factors, of converged outcomes identifying an incorrect 
number of factors. 
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Table 4: Overview of factor loading bias based on the number of factors identified by 
PA_SMC. Each of the rows represent a combination of percentages missing data (10%, 20%, and 
40%) and missing data treatment (PD, FIML, MV, and MC). The numbers in each of the rows 
are based on 1,800 correlation matrices (23,400 in total). Converged is the fraction for which 
outcomes are reached. Mean is the average of the median factor loading biases versus NMD for 
the converged outcomes. IQR is the interquartile range (75th percentile minus 25th percentile) of 
these same median factor loading biases. The two rightmost columns show the Mean and IQR 
calculated on those data sets for which all combinations of percentage missing data and missing 
data treatment reached an outcome (excluding combination for which convergence was below 
25%).  
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Table 5: Overview of factor loading bias based on the number of factors identified by 
SMT_RMSEA. Each of the rows represent a combination of percentages missing data (10%, 
20%, and 40%) and missing data treatment (PD, FIML, MV, and MC). The numbers in each of 
the rows are based on 1,800 correlation matrices (23,400 in total). Converged is the fraction for 
which outcomes are reached. Mean is the average of the median factor loading biases versus 
NMD for the converged outcomes. IQR is the interquartile range (75th percentile minus 25th 
percentile) of these same median factor loading biases. The two rightmost columns show the 
Mean and IQR calculated on those data sets for which all combinations of percentage missing 
data and missing data treatment reached an outcome (excluding combination for which 
convergence was below 25%). 
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Table 6: Overview of factor loading bias based on the number of factors identified 

by PA_SMC. Each of the rows represent a combination of percentages missing data (2%, 5%, 
and 8%) and missing data treatment (PD, FIML, MV, and MC). The numbers in each of the 
rows are based on 900 correlation matrices (11,700 in total). Converged is the fraction for 
which outcomes are reached. Mean is the average of the median factor loading biases versus 
NMD for the converged outcomes. IQR is the interquartile range (75th percentile minus 25th 
percentile) of these same median factor loading biases. The two rightmost columns show the 
Mean and IQR calculated on those data sets for which all combinations of percentage missing 
data and missing data treatment reached an outcome. 
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Table 7: Overview of factor loading bias based on the number of factors identified by 

SMT_RMSEA. Each of the rows represent a combination of percentages missing data (10%, 
20%, and 40%) and missing data treatment (PD, FIML, MV, and MC). The number of 
respondents is set to 300, 400, and 500. The numbers in each of the rows are based on 900 
correlation matrices (11,700 in total). Converged is the fraction for which outcomes are reached. 
Mean is the average of the median factor loading biases versus NMD for the converged outcomes. 
IQR is the interquartile range (75th percentile minus 25th percentile) of these same median factor 
loading biases. The two rightmost columns show the Mean and IQR calculated on those data sets 
for which all combinations of percentage missing data and missing data treatment reached an 
outcome (excluding combination for which convergence was below 25%). 
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Table 8: Overview of identified factors for PA_SMC and SMT_RMSEA. Percentages of missing data equal to 
10%, 20%, and 40%. Number of respondents equal to 40, 60, and 80. The numbers in each of the rows are based on 900 
correlation matrices (11,700 in total). Converged is the fraction for which outcomes are reached. Correct is the fraction of 
converged outcomes identifying the correct number of factors. Mean AD is the average absolute deviation, in number of 
factors, of converged outcomes identifying an incorrect number of factors. 
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Table 9: Overview of factor loading bias based on the number of factors identified by 
SMT_RMSEA. Each of the rows represent a combination of percentages missing data (10%, 
20%, and 40%) and missing data treatment (PD, FIML, MV, and MC). The number of 
respondents is set to 40, 60, and 80. The numbers in each of the rows are based on 900 correlation 
matrices (11,700 in total). Converged is the fraction for which outcomes are reached. Mean is the 
average of the median factor loading biases versus NMD for the converged outcomes. IQR is the 
interquartile range (75th percentile minus 25th percentile) of these same median factor loading 
biases. The two rightmost columns show the Mean and IQR calculated on those data sets for 
which all combinations of percentage missing data and missing data treatment reached an 
outcome (excluding combination for which convergence was below 25%). 

 
 


