Advance
Preprints are early versions of research articles that have not been peer reviewed. They should not be regarded as conclusive and should not be reported in news media as established information.
Two_new_algorithms_for_ecological_inference_based_on_linear_programming.pdf (635.41 kB)

Improving estimates accuracy of voter transitions. Two new algorithms for ecological inference based on linear programming

Download (635.41 kB)
preprint
posted on 04.06.2021, 17:37 by JoseM PaviaJoseM Pavia, Rafael Romero
The estimation of RxC ecological inference contingency tables from aggregate data defines one of the most salient and challenging problems in the field of quantitative social sciences. From the mathematical programming framework, this paper suggests a new direction for tackling this problem. For the first time in the literature, a procedure based on linear programming is proposed to attain estimates of local contingency tables. Based on this and the homogeneity hypothesis, we suggest two new ecological inference algorithms. These two new algorithms represent an important step forward in the ecological inference mathematical programming literature. In addition to generating estimates for local ecological inference contingency tables and amending the tendency to produce extreme transfer probability estimates previously observed in other mathematical programming procedures, they prove to be quite competitive and more accurate than the current linear programming baseline algorithm. The new algorithms place the linear programming approach once again in a prominent position in the ecological inference toolkit. We use a unique dataset with almost 500 elections, where the real transfer matrices are known, to assess their accuracy. Interested readers can easily use these new algorithms with the aid of the R package lphom.

Funding

ECO2017-87245-R

AICO/2019/053

History

Declaration of conflicts of interest

Any conflict of interest to declare

Corresponding author email

pavia@uv.es

Lead author country

Spain

Lead author job role

Higher Education Researcher

Lead author institution

Universitat de Valencia

Human Participants

No

Comments

Log in to write your comment here...